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We present a modified version of Nelson’s seminal paper on the derivation of the time-dependent Schrödinger
equation which draws on the equation of motion of a particle that moves under the influence of a classical
force field and additional stochastic forces. The emphasis of our elaboration is focused on the implication
of allowing stochastic forces to occur, viz. that the energy E of the particle is no longer conserved on its
trajectory in a conservative force field. We correlate this departure ∆E from its classical energy with the
energy/time uncertainty relation ∆E ∆t ≈ �/2 where ∆t is the average time for ∆E to persist. The stability
of atoms, the zero-point energy of oscillators, the tunneling effect and the diffraction at slits are shown to
be directly connected with the occurrence of such energy fluctuations. We discuss and rederive Nelson’s
theory entirely from this point of view and generalize his approach to systems of N particles which interact
via pair forces. Achieving reversibility in a description of particle motion that is akin to Brownian motion,
represents a salient point of the derivation. We demonstrate that certain objections raised against Nelson’s
theory are without substance. We also try to put the particular worldview of this version of stochastic quantum
mechanics into perspective with regard to the established Copenhagen interpretation.

1 Introduction

The conceptual foundation of modern quantum mechanics still rests on the idea that the motion of micro-
scopic particles can consistently be described only if one accounts for the influence of the measuring process
which leads to a completely new structure of the theory. The present study is concerned with adopting the
opposite view in that it denies the fundamental role of the measuring process as being responsible for the
non-classical behavior of microscopic particles. In spirit this is in keeping with John Bell’s article “Against
‘measurement’ ” [1]. We attempt to revitalize the idea of tracing the one-particle Schrödinger equation back
to Newton’s second law F = m0 a where F is the force acting on a particle of rest massm0 and effecting the
acceleration a. As has been shown in the mid-60s by E. Nelson [2] a consistent derivation of the Schrödinger
equation is, in fact, possible if one assumes that the particle in question is subject to a modified Brownian
motion with a diffusion constant �/2m0 where h = 2π � is Planck’s constant. Nelson’s approach which is
now commonly referred to as “stochastic quantization” has served ever since as a reference for numerous
workers in the field of stochastic processes (see e.g. Gilson [3], Olavo [4], Blanchard et al. [5] and for earlier
reviews by Yasue [6] and De La Peña [7]). Rather than discussing “stochastic quantization” primarily within
the mathematical framework of stochastic processes we shall strongly emphasize the physical content of the
assumptions made in going beyond classical mechanics. We shall stay as close to basic calculus as possible
and try to make our exposition fully self-contained.
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The current analysis follows essentially Nelson’s considerations but we depart from his presentation to
make one aspect particularly evident: the reason why microscopic and macroscopic particles seem to move
and to behave differently reflects the active role of the vacuum providing the space for energy fluctuations.
The latter will henceforth be referred to as vacuum fluctuations. They have to be regarded as an objective
property of nature. One could view them as caused by an exchange of energy between the mechanical system
in question and the embedding vacuum that serves as an energy reservoir in terms of virtual particles: if
that reservoir reduces its content of virtual particles, the energy of the system under study increases so that
the energy of the entire system comprising this “vacuum reservoir” is conserved. In that sense quantum
mechanical systems may be viewed as open systems like classical point mass systems in contact with a heat
bath. This analogy will become particularly visible with our treatment. In the following we shall focus on
the description of the point mass “subsystem” as an open system whose energy is conserved only on the
average.

An implication of this concept is that charged point masses, despite their irregular motion, do not emit
or absorb radiation, at least on the average. Radiation only occurs when the probability density of finding
the point mass at its various positions in space becomes time-dependent.

If one disregards the details of the energy transfer between the two systems, vacuum fluctuations appear
as an irregular temporary departure of the particle in question from its energy conserving trajectory in that
it changes its energy by an average amount ∆E for an average time interval ∆t so that ∆E∆ t ≈ �/2. It
is this departure from classical energy conservation which explains the stability of the hydrogen atom in
its ground-state (which applies quite generally to all atoms and their compounds), the zero-point motion
of atoms in molecules and solids and the “tunneling” of particles through a potential wall which actually
amounts to overcoming that wall. This process also governs the decay of radioactive nuclei and hence
controls objectively the outcome of “Schrödinger’s cat” experiment.

It also seems to be undebated that the material property of He4 to stay fluid at normal pressure down
to the lowest accessible temperatures, is due to the zero-point motion of its atoms which keeps the system
molten. Following the same line of thought, one can simply understand why it solidifies under pressure.

All these phenomena cannot possibly be caused by the interaction with observers or with measuring
instruments.

The idea of viewing the motion of microscopic particles as a result of stochastic processes is much in
the spirit of Einstein’s early conjecture, that quantum mechanics takes “. . . an approximately analogous
position to the statistical mechanics within the framework of classical mechanics”.

The interpretation of ∆E∆ t ≈ �/2 as describing “out of mass shell”-phenomena that occur without
observer has a long history. The short-range character of internuclear forces mediated by pions has commonly
been explained by assuming that pions can spontaneously occur out of the vacuum by temporarily violating
energy conservation. The amount of energy needed to create a pion having the rest mass of 140 MeV and
moving at half the velocity of light is ≈ 161 MeV. Its lifetime τ is defined by ∆E τ ≈ � which yields
τ = 4 · 10−24 s. During that time it traverses a distance of ≈ 0.6 · 10−13 cm which is consistent with
experimental facts that bear on the range of internuclear forces. “Virtual particles” that occur “out of mass
shell”, that is for the same reason as the pions just discussed, constitute absolutely common objects in
quantum field theory, like electron-positron pairs, and, more general, particle-anti-particle pairs.

Considering the epistemological attractiveness of tracing quantum mechanical behavior back to energy
fluctuations in systems of point masses that are in a well defined sense open, it is hard to understand why
the process of measurement is still defended as providing the fundamental rationale for the non-classical
behavior of microscopic systems. We quote here only one voice (A. Zeilinger [8]) out of a more recent
discussion on this matter: “I suggest that the very austerity of the Copenhagen interpretation, unsurpassed by
that of any other interpretation of quantum mechanics, speaks very much in its favor. Indeed, its basic attitude
toward the fundamental role of observation represents a major intellectual step forward over naive classical
realism. In classical physics, observation is often regarded as a secondary concept, with the elements of the
real world being primary. Yet it is obvious that any statement about nature has to be based on observation.
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What could then be more natural than a theory in which observation plays a more fundamental role than in
a classical worldview?”

The particular situations discussed in the context of performing a measurement define in all cases a
quantum mechanical system that undergoes changes in time objectively dictated by the time-dependent
Schrödinger equation which will be shown to result from vacuum fluctuations. In the school of thought
that believes in the crucial role of observations this fundamental equation falls essentially out of the blue.
Moreover, there is no cogent interconnection between the influence of observation on a system and the
mapping of its “observables” on Hermitian operators, which constitutes the standard procedure in setting
up the mathematical framework of quantum mechanics. In a quantum mechanical theory that is based on
vacuum fluctuations, the specific form of the operators and their commutation rules represent results of the
theory and not assumptions. It is therefore hard to see that the Copenhagen interpretation effects “austerity”
in the development of the mathematical apparatus.

The hypothesis of vacuum fluctuations allows one to view the “real world” in familiar terms of “naive
realism”. In an electron two-slit experiment, for example, this view suggests that each electron follows an
irregular trajectory from the tip of the cathode to the fluorescent screen or some other position sensitive
detector where it is captured by some atom. The latter process is described by the time-dependent Schrödinger
equation whose Hamiltonian contains all the information on the interaction of the particles involved. If the
electron is captured by an atom of a fluorescent screen the process is followed then by the ejection of a
photon. One could position a digital camera behind that screen so that the photon, if it runs through the
camera lens, could finally be monitored as a scintillation flash at a particular point of the camera display.
In so doing, one could identify the position of the atom that captured the electron. However, the presence
or absence of the camera behind the screen has no influence at all on the capturing process. It is hence
absolutely unclear why that process should play a particular role as a measurement different from other
electron capture processes which occur constantly in all kinds of situations and are governed by the same
time-dependent Schrödinger equation. Heisenberg’s statement [9] “. . . the idea of an objective real world
whose smallest parts exist objectively in the same sense as stones or trees exist, independently of whether
or not we observe them . . . is impossible” and that “We can no longer speak of the behavior of the particle
independently of the process of observation” [10] seems absurd in the light of the above considerations. But
it reflects exactly the Copenhagen interpretation of quantum mechanics the spirit of which is still very much
alive in practically all modern textbooks. The present state of affairs is perfectly described by Goldstein [11]
in a more recent article on “Quantum Theory without Observers”: “Many physicists pay lip service to the
Copenhagen interpretation, and in particular to the notion that quantum mechanics is about observation or
results of measurement. But hardly anybody truly believes this any more – and it is hard for me to believe
that anyone really ever did.” We refrain here from discussing the vast literature on this subject any further.

A number of post-war studies (cf. [12–15]) pursuing ideas similar to Nelson’s and reflecting a certain
mood of “post-war heresy” appeared prior to Nelson’s paper along with other contributions that challenged
the established interpretation of quantum mechanics.

For the sake of clarity in understanding the particular features of our approach, we deliberately omit dis-
cussing the literature that has grown out of Nelson’s fundamental contributions [2,16,17]. A comprehensive
review of this literature up to 1981 has been given by Selleri and Tarozzi [18]. More recent contributions
of different scope are due to Bohm and Hiley [19] and to Olavo [4]. In Sect. 10 we shall only comment on
one article that bears directly on the validity of the argument pursued in the current study.

As has already become evident from our considerations above, the existence of continuous, though
irregular, particle trajectories will be a crucial hypothesis which all our studies in the ensuing sections will
be based upon. Many of our discussions will therefore be in line with those familiar from de Broglie-Bohm-
Vigier theory [20–23, 25].
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Fig. 1 Scattering at a slit.

2 Some consequences of vacuum fluctuations

The objective of this section is to give a brief synopsis of how the idea of a temporary violation of classical
energy conservation, which ∆E∆ t ≈ �/2 refers to, can be turned into a description of the non-relativistic
motion of quantum mechanical particles or their stationary state behavior.

If a free particle with a definite momentum p traverses the vacuum its energy p2/2m0 undergoes
temporary changes ∆E = (2p · ∆p + ∆p2)/2m0 that cause changes of its momentum in all directions.
Those with components perpendicular to p lead to shifts ∆r⊥ sideways to its previous trajectory. After
∆t seconds the original momentum (and energy) is restored so that one can regard the whole process as a
reversible scattering, which, however, leads to a shift ∆r⊥. Since the subsequent shifts can have both signs,
only their square remains non-zero on averaging over sufficiently many reversible scattering processes of
this kind. This average can be obtained by again invoking ∆E∆ t ≈ �/2 and setting ∆E = ∆p2

⊥/2m0 =
1
2m0(∆v⊥)2 which yields � ∆t/2 ≈ 1

2m0(∆v⊥ ∆t)2 .
We observe that ∆v⊥ ∆t = ∆r⊥, and hence

∆r2
⊥ ≈ �

m0
∆t .

To keep the notation simple we have omitted overlines here to characterize the quantities as averages.
We may now define a cone which is rotational symmetric around the particle’s unperturbed (classical)

trajectory and has a cross section of
√

4 � ∆t
m0

in diameter at the classical position of the particle. It comprises

essentially all sections of the perturbed trajectory and its cross section widens in time as the particle moves
further. If the particle is very fast and heavy and if its trajectory as a free particle is confined to a certain
section, the diameter of this cone remains small everywhere and can well prove undetectable in practice.
The images of α-particle trajectories in a cloud chamber are well known examples of this situation. In the
case of a macroscopical particle, a steel ball, for example, which drops in a vacuum chamber, it seems to
be clear that there will be no aberration from its classical trajectory. However, on a microscopic scale the
trajectory of its center of gravity is irregular as well, but the diameter of the cone remains tiny everywhere
because m0 is large.

We now consider a particle that is on its way through the middle of a slit of width 2∆x cut into some
planar material of “infinitesimally small” thickness. This situation is illustrated in Fig. 1. Due to a vacuum
fluctuation the particle may receive an extra momentum ∆p⊥ across its original momentum before it reaches
the slit. This momentum must not be redelivered to the vacuum at the end of the scattering process because
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the vacuum can instead transfer a momentum −∆p⊥ to the wall material of the slit next to the particle. The
momentum of the particle/wall system perpendicular to the particle’s original motion is restored by this.
However, to restore the original energy as well, the particle must in addition transfer the momentum

∆p|| = p
(
1 −

√
1 − (∆p⊥/p)2

)
to the wall where ∆p|| is in the direction of the original momentum p. Thereby the total momentum of the
particle/wall system is reestablished. After leaving the slit the particle now moves on a deflected trajectory.
As it was originally moving on a trajectory through the middle of the slit and, after having received an extra
momentum ∆p⊥, moved sideways by ∆r⊥ = ∆x toward the edge of the slit, the duration ∆t of the energy
fluctuation is given by

∆p2
⊥

2m0
∆t ≈ 1

2 � .

Because of ∆v⊥ = ∆p⊥/m0 and ∆r⊥ = ∆v⊥ ∆t we thus have

∆p⊥∆x ≈ � and sinϑ =
∆p⊥
p

=
�

p∆x

whereϑ is the deflection angle. That means, the deflection angle increases as the slit narrows, but it decreases
if the particle becomes faster. This is in agreement with the observations. It is also obvious from the above
argument that the particle in question must not be required to be a point mass. Beams of large particles like
fullerene molecules which have recently been studied in the context of deflection at slits (s. Zeilinger and
associates [26]), behave the same way as electrons, for example.

Employing the same concept of vacuum fluctuations that temporarily change the energy of a particle,
yields an immediate understanding of the stability of atoms in their ground-state. We confine ourselves here
to considering only hydrogen as the simplest case of an atom. Without vacuum fluctuations effecting the
motion of the electron, the latter would eventually attain a position ≈ 10−13 cm from the nucleus where its
potential energy becomes comparable to the creation energy of electron-positron pairs. Because of lepton
number conservation it does not merge with the proton. We denote its energy at this distance by E(0), the
magnitude of which, however, will be of no importance to the following considerations.

Let a vacuum fluctuation spontaneously transfer a radial momentum to the electron so that it can reach
a distance R from the nucleus at which it has fully used up its kinetic energy and come to a stop. After the
elapse of a total time of ∆t the electron has moved toR and back to its previous position, thereby restoring
its original energy E(0). Within this time interval the motion of the electron is governed by

m0

2
ṙ2 =

e2

4πε0

(
1
r

− 1
R

)
where r is the remaining distance from the nucleus which in the present situation is assumed to be a point
charge. The quantity ε0 denotes the capacity of the vacuum.

We rewrite the above differential equation in the form

ṙ =
1
β

√
1
r

− 1
R

where

β =
1
e

√
2πm0 ε0

or alternatively

dt

dr
= βR1/2 r1/2

√
R− r

.
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The average kinetic energy is given by

Ekin. =
2

∆t

∫ ∆t/2

0

m0

2
ṙ2(t′)dt′ =

e2

4πε0
2

∆t

∫ R

0

(
1
r

− 1
R

)
dt

dr
dr .

In the second integral we have replaced the lower limit of ≈ 10−13 cm by zero. If one inserts here dt
dr from

above, the evaluation of that integral yields

Ekin. =
1

∆t
e2

4πε0
π β

√
R .

The result may be rewritten

Ekin. ∆t =
e2

4πε0
π β

√
R .

As Ekin. stands for the average energy fluctuation ∆E, we have

∆E∆t = f �

where f is a dimensionless factor whose lower limit is 1/2, but there is otherwise a certain latitude in its
value. The latter equation together with the preceding one yields

R =
2 f2

π2

�
2

m0e2
4πε0 =

2 f2

π2 rB

where

rB =
�

2

m0e2
4πε0

is the Bohr radius. If one chooses

f = 2.2

R becomes identical with the Bohr radius.
It is hence obvious, that the size of the hydrogen atom in its ground-state can well be explained by

vacuum fluctuations which scatter the electron in an irregular fashion from its position near the nucleus out
to distances of approximately rB.

As already stated earlier, the occurrence of zero-point motion with harmonic oscillators is another
example of the presence of vacuum fluctuations. If a particle moves along the x-axis in a potential

U(x) =
m0

2
ω2

0x
2

where it could classically oscillate with the frequency ω0, the particular situation where it is classically at
rest at x = 0 cannot persist under vacuum fluctuations. The latter impart irregularly spontaneous momenta
p on the particle which enable it to move up to a turning point xt �= 0 so that

U(xt) = ∆E ≈ �

∆t
.

Here ∆t denotes the time needed by the particle to reach the point xt and move back to its rest position
which amounts to half of the oscillation period. Hence we have ∆t = π

ω0
which on insertion into the above

equation yields

∆E =
�ω0

π
.
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Fig. 2 Harmonic oscillator in a uniform electric field.

The exact result derived from the Schrödinger equation yields �ω0
2 . This energy is equal to twice the average

potential energy, that is

U =
m0

2
ω2

0 x
2 =

1
2

�ω0

2

where x2 is the mean square distance of the atom from its equilibrium point. The square root of x2 defines
the diameter d0 of the space absorbed by the oscillating atom in its state of lowest energy. It follows then
from the above equation that

d0 =
√

�

2m0ω0
.

If one considers solid He4 under pressure as a regular array of harmonic oscillators, each oscillator referring
to an individual atom moving around a classical equilibrium position, this array can only be stable as long
as

d0 � d

where d is the diameter of a He4 atom. As one lowers the pressure, ω0 decreases and d0 will eventually no
longer fulfill the above inequality. As a conseqence, the lattice melts. As He4 is experimentally known to
be a liquid at normal pressure, the occurrence of solidification can hence be understood by reversing the
above argument.

The so-called quantum mechanical tunneling effect can be explained much along the lines of the preceding
examples: we consider a charged particle in a potential as depicted in Fig. 2. Obviously, the potential consists
of a parabolic trough onto which a linear potential has been superimposed that describes an external uniform
field Ê = F/e where e is the charge of the particle moving in that potential and F is the force exerted on
the particle by the external electric field. The constant energy E of the particle is characterized by a straight
horizontal line. Without the external field there would be intersections of the oscillator potential and this
line at x1, x2, but – different from the situation shown in the Figure – they would be shifted to the left as
the minimum of the parabola which would lie then at x = 0 and move up to the origin. These intersections
mark turning points of the classical motion of the particle. The occurrence of a third point of intersection,
x3, that appears in the presence of the external field, does not have any effect on the particle as long as it
moves classically. However, under the influence of vacuum fluctuations the particle can reach this point if
its temporary energy enhancement ∆E is such that

∆E = Um − E ≈ �

∆t
,
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that is

∆t =
�

Um − E

where ∆t is the time interval within which the particle has to return to its “points of energy conservation”
x2 or x3. The maximum of the potential has been denoted by Um, its coordinate by xm. To reach the point
x3, its classical motion from xm to x3 must be performed within ∆t seconds which means

x3 − xm =
F

2m0
(∆t)2 .

Inserting ∆t from the previous equation one obtains

x3 − xm ≤ F

2m0

(
�

∆E

)2

.

The “≤”-sign refers to a modification of our assumption concerning ∆t: the latter should be the time a
particle needs at most to travers the distance from xm to x3.

We now exploit the fact that ∆E/(x3 − xm) represents – except for the sign – just the gradient of the
linear portion of the potential, which means that it is identical with −F . Hence

x3 − xm =
∆E
F

.

This combined with the foregoing equation yields
√

2m0

�F
φ

3
2 ≤ 1 where φ = Um − E .

The latter inequality represents a condition for the magnitude of the electric field Ê = F/e to allow the
particle to escape from the trough. We have replaced Um − E by φ which represents the “work function”
of the system, i. e. the minimum energy needed to extract an electron from a metal, for example.

The above result contains the essential interconnection of quantities governing the emission of parti-
cles from a metal tip. It is this combination of quantities which appears in the Fowler-Nordheim formula
describing the emission of particles from a metal tip under the influence of an external electric field.

But the above simple derivation yields an additional interesting information which is otherwise not easily
accessible. The quantity ∆t given by ∆t = �/(Um − E) = �/φ describes the time needed by the particle
to leave the trough. Because of

� = 6.6 · 10−16 eVs and φ ≈ 5 eV

the passage times are of the order of 10−16 s.
One can easily verify that

√
2m0 φ

3/2/�F equals unity at an electric field strength of Ê ≈ 3·108 V cm−1

if φ ≈ 4.6 eV which is the work function of tungsten metal and also the approximate magnitude of the work
function of many other transition metals. If one takes the tungsten tip of a typical field electron microscope
as an example where the emitting tip is essentially a half-sphere of radius R ≈ 5 · 10−6 cm field emission
occurs at a voltage of V ≈ 1.5 kV since Ê = V/R. This is exactly what one observes.

It is obvious from the above considerations that the term “tunneling effect” is actually misleading if not
downright wrong, because in actual fact the particle has to overcome the potential maximum at xm if it
succeeds in escaping the trough. Only from a classical point of view the emission of the particle seems to
have been accomplished by “drilling a tunnel” through the potential barrier at a distance of Um − E from
the top.
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We now turn to the problem of how to describe the motion of a particle whose energy fluctuates irregularly
around its constant average according to ∆E∆t ≈ �/2 and gradually drifts away from its classical trajectory.
Actually, this cannot be a meaningful objective because it implies the possibility that the point at which the
trajectory starts can physically be well defined. At first sight it seems that this can easily be realized: one
would only need a source, for example, an atomic size tip of a tunneling microscope which ejects electrons
of a certain absolute value of momentum, and a pinhole in front of the source so that only one trajectory
can pass through that hole. However, as explained above, the particle would strongly be deflected by the
wall material of the pinhole and with overwhelming probability not continue its motion in the original
direction. Consequently, to avoid any non-classical perturbation of its trajectory, the hole must be very large
in diameter, and the trajectories of the particles that are radially ejected from the tip within a solid angle
of Ω ≤ 2π must be bundled by an electron lense to form a beam of macroscopic cross section such that
the momentum p of each particle, averaged over many reversible scatterings, is the same everywhere in the
beam, irrespective of the particle one chooses. Hence, a consistent description of the motion of a particle
must comprise the entire space that is accessible due to vacuum fluctuations and because the initial lateral
position of the particle (in the present example: the starting point at the surface of the atom at the tip) is
only probabilistically determined when the particle starts moving along its irregular trajactory. The same
applies to a particle that is bound in an attractive potential where it can be scattered to any position away
from its classical orbit.

With this view in mind we subdivide the accessible space of volume V into Nc sufficiently small cubes
∆3rν numbered by an index ν and focus on one of the cubes labeled by ν0. We imagine that we were able to
mimic the irregular trajectory of a particle, that undergoes reversible scatterings, in a computer simulation
and perform this simulation in parallel for a very large number of N equivalent systems which only differ
in the starting points of their trajectories and in the time at which they start their motion. We then draw
all trajectories together in a three-dimensional visualization which yields a family of very densely packed
trajectories all of which represent equivalent particle histories. It is this ensemble which we shall henceforth
refer to. In the following it will be convenient to introduce a function for the j-th particle

εj(r̄ν , t) =
∫

∆3rν

δ(rj(t) − r) d3r =

{
1 if rj(t) is contained in ∆3rν

0 otherwise

where δ(rj(t)− r) stands for the Dirac function and r̄ν denotes some point in ∆3rν . As we are considering
only cubes of very small size, we may justifiably replace r̄ν by r from now on where r is always meant
to lie within the cube ∆3rν0 under consideration. We may now define an ensemble average of the particle
velocity by

v(r, t) =

∑N
j=1 εj(r, t)vj(t)∑N

j=1 εj(r, t)
(1)

and, likewise, a probability density of finding a particle in ∆3rν0

ρ(r, t) =
∆N(r, t)
∆3rν0

where

∆N(r, t) =
1
N

N∑
j=1

εj(r, t) and
Nc∑

ν=1

∆N(rν , t) = 1 .

Obviously, ρ(r, t) has the property∫
V

ρ(r, t)d3r = 1 . (2)
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In a stationary state situation the functions ρ(r, t) and v(r, t) are actually time-independent. However, if
the initial conditions or the potentials are time-dependent, the probability density and the average velocity
are time-dependent as well. As in the case of a hydrodynamical gaseous system that consists of atoms or
atomic composites, the trajectory of an individual particle is definitely very irregular but still differentiable,
otherwise the stochastic forces, which are responsible for the irregularity, would not be defined everywhere.
But the ensemble average v(r, t) will be a smoothly varying function again. With these definitions at
hand, we are now in the position to elucidate Nelson’s idea of incorporating vacuum fluctuations into a
Newtonian theory of particle motion. His hypothesis is as follows: the vacuum induced energy changes
∆E of a particle, which last for an average time interval ∆t so that ∆E∆t ≈ �/2, can be simulated by
assuming that the particle performs a modified Brownian motion driven by fluctuating vacuum forces. That
means more specifically: one subdivides the system of N independent particles, defining the fundamental
ensemble, into two subsets B (for “Brownian”) and A (for “Anti-Brownian”). These subsystems are subject
to stochastic forces FA/B

s (t) which can generally be decomposed into a random force FR(t) with a Gaussian
probability distribution around zero acting equally in both subsytems (i.e. FA

R(t) = FB
R(t)) and into a mean

force proportional to the particle velocity vj(t). That mean force is − m0 vj(t)
τ for the B-system , and

hence slows down the motion of the particle within τ seconds if it were free, and it is + m0 vj(t)
τ for the

A-system implying an enhancement of the A-particle motion. The two subsystems are characterized by
pairs of functions {ρB(r, t),vB(r, t)} and {ρA(r, t)},vA(r, t)}, and the subdivision is performed such that

ρA(r, t) = ρB(r, t) and vA(r, t) = vB(r, t).

Note that is always possible to ensure vB(r, t) = vA(r, t). If a tentative subdivision does not comply with
that requirement and one would have vB(r, t) < vA(r, t), for example, one can interchange particles from
B and A (slow ones from B for as many, but faster ones from A) so that one finally obtains equality of the
velocities without having changed the number of particles in A and B. This possibility of interchanging
particles A and B to equalize the velocities vA and vB will be of great importance to the following.

We consider the temporal changes within a time interval ∆t ≥ τ that occur within ∆3rν0 due to particle
transitions from or to the cubes outside. The B-system will lose energy as opposed to the A-system whose
energy increases. Hence, if one averages over the two rates of changes one obtains a differential equation
that describes a system without energy dissipation. Since the time-evolution of the two subsystems diverges,
one has to redivide the whole system of N particles into subsystems B and A for the subsequent time step
∆t by newly decomposing the set of nν particles in ∆3rν0 into nν/2 particles for B and nν/2 particles
for A such that vA(r, t) = vB(r, t) with t now referring to the new time interval. Hence, if one follows a
specific particle along its irregular trajectory it will as often belong to the B-system as to the A-system on the
average. As this change from B- to A-character of a particle is not described by the transition probabilities
governing the time evolution of, respectively, the A- and the independent B-system within a certain time
step ∆t ≥ τ , the overall process described by the above procedure is non-Markovian. This has clearly been
pointed out also by M. Requardt [27].

It is, furthermore, important to note that temporal changes of such stochastic systems, which are formally
described by differential equations, are actually taking place on a coarse grained time scale which means
that the time t is defined only within a certain margin τ .

The artificial subdivision of the original ensemble, comprisingN particles, into A- and B-systems, where
members are interchanged to reestablish equality of the velocities vA and vB, is only an auxiliary trick
to mimic what happens naturally to a single particle under the influence of vacuum fluctuations. But this
particular picture provides a simple rationale for what causes the outcome of the two-slit experiment: as a
consequence of interchanging B- and A-particles after each time step the trajectories of the particles become
intertwined. That means: a particle that has moved through the first slit and reached the cube ∆3rν0 at some
distance from the slit as a “B-particle”, may be interchanged with a particle that moved through the second
slit if the trajectory of the latter happens to enter the same cube as an “A-particle”. If the second slit is
closed, the B-particle’s further trajectory will be different because certain choices of interchange do not
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exist any more. It is evident from this example that the process of interchanging particles which ensures
the absence of dissipation, leads automatically to a non-locality in the description of the particle motion.
However, one should always keep in mind that one is actually dealing with a single-particle system whose
motion is controlled by certain scattering probabilities. The latter have to ensure reversibility, which means:
if the particle has changed its momentum at some point in real space, the vacuum has to remember at a
different “point of restauration” what exactly the previous values of energy and momentum had been. Only
to mimic these particular scattering probabilities one resorts to the behavior of our artificial ensemble, that is,
to the behavior of two subsets of independent particles which represent different histories under equivalent
classical conditions. This will become apparent in the discussion of the Smoluchowski equation in Sect. 4.

It is clear that a particle whose probability of being at various positions in space is governed by the
Schrödinger equation, which we shall derive, is under no circumstances a wave. This is in analogy to
a Brownian particle whose probability in space is governed by the equation of diffusion, but is never a
continuous medium. The “wave/particle duality”-parlance is unacceptable in a stochastic quantum theory
of particle motion because this parlance pretends to describe something which actually does not exist.

In concluding this Section we want to comment on a recent article by Hall and Reginatto [28] which
also presents a derivation of the one-particle Schrödinger equation. This paper is based on the concept of
random momentum fluctuations of the particle which the authors require to inversely correlate with the
position fluctuations such that ∆pi ∆xi (i = 1, 2, 3) denoting the coordinate axes) is preserved under a
scaling transformation xi → αxi ; pi → αpi where α is real-valued und dimensionless and ∆pi, ∆xi

denote rms-values of the respective fluctuations.
The authors fail to associate these momentum fluctuations with energy fluctuations which we consider

to be of vital importance to an immediate understanding of the stability of atoms and the tunneling effect.
As the authors, unfortunately, deem it a particular virtue of their approach that it effectively eliminates
the notion of particle trajectories, they discard the helpful concept of following a particle along its path of
reversible scatterings. But only this concept reveals the memory effect of the vacuum which transforms into
the interference properties of the associated wavefunction at a later stage of our derivation. Furthermore, our
qualitative explanation of the two-slit experiment was intimately tied to the existence of a particle trajectory
and to its probability of continuing in a certain direction at a certain point. This probability depends on
whether or not the second slit is open, even when it has not passed through that slit.

We advance the opinion that our adaptation of Nelson’s approach has definitely more to offer in terms
of physical insight.

3 Brownian motion

We start with first considering the Brownian subsystem. As pointed out in the foregoing Section, we describe
the effect of the vacuum on the j-th particle by a stochastic force

FB
sj(t) = FB

rj(t) − m0

τ
vj(t) (3)

where vj is the particle velocity and FB
r = (Fr1, Fr2, Fr3) denotes a random force with a Gaussian

distribution

P (FB
rk) =

1√
π Fr0

e−(FB
rk/Fr0)2 (k = 1, 2, 3).

The quantity Fr0 is defined

Fr0 =
1

τcoll.

√
m0 kB T (4)

where it has been assumed that the “vacuum” can be assigned an effective temperature T . The quantity kB
denotes the Boltzmann constant, and τcoll. describes a mean time of momentum transfer. Hence eq. (4) can
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alternatively be cast as

∆p2
k

2m0
= 1

2 kB T −→ ∆p2

2m0
= 3

2 kB T (5)

where ∆p2
k is the mean square of the momentum transfer.

To avoid gaps in the detailed understanding of our considerations we restate some essential steps in the
derivation of Einstein’s law [29] on the mean square displacement of the particle.

The equation of motion for the j-th particle takes the form of Langevin’s equation [30]

m0 σ̈jk +
m0

τ
σ̇jk = Fjk + FB

rjk(t) (6)

where σj = (σ1, σ2, σ3) describes the shift of the particle’s position and

Fj = −∇V (rj) (7)

is the external classical force acting on the particle, V (r) the associated potential. The shift σj may be
subdivided into a portion σrj that is caused by the random force, and a portion σc that occurs when the
random force is absent. The subscript “c” stands for “convection”. Hence, these shifts obey equations

σ̈rjk +
1
τ
σ̇rjk = fB

rjk (8)

and

σ̈cjk +
1
τ
σ̇cjk = fjk (9)

where

fB
rjk =

1
m0

FB
rjk ; fjk =

1
m0

Fjk .

Obviously, the sum of eqs. (8) and (9) yields eq. (6).
Muliplication of eq. (8) by σrjl gives

d

dt
(σrjl σ̇rjk) − σ̇rjl σ̇rjk = − 1

τ
σrjl σ̇rjk + σrjl f

B
rjk (10)

where we have observed that

d

dt
(σrjl σ̇rjk) = σrjl σ̈rjk + σ̇rjl σ̇rjk .

We now form the ensemble average of eq. (10) in analogy to eq. (1) in Sect. 2. As there is no correlation
between σrjl and fB

rjk including l = k, we have

1∑N
j=1 εj(r, t)

N∑
j=1

εj(r, t)σrjl f
B
rjk = 0 .

There is also no correlation between σ̇rjl and σ̇rjk for l �= k, and hence

1∑N
j=1 εj(r, t)

N∑
j=1

εj(r, t)σ̇rjl σ̇rjk = δlk [σ̇rk(r, t)]2 .
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Because of eq. (5) we thus have

[σ̇rk(r, t)]2 =
kB T

m0
. (11)

As a result, the ensemble average of eq. (10) takes the form

∂

∂t
(σrl σ̇rk) +

1
τ

(σrl σ̇rk) = δlk
kB T

m0
. (12)

The solution of this equation can be cast as

σrl σ̇rk = δlk
kB T τ

m0

[
1 − Ce− (t−t0)

τ

]
where C is some constant. Without loss of generality σr may be defined such that σr(r, t0) = 0. In that
case C becomes equal to one.

For a time interval

∆t = t− t0 	 τ (13)

the second term in the foregoing equation may be neglected, and we arrive at

σrl σ̇rk = δlk ν (14)

where

ν =
kB T τ

m0
(15)

denotes the kinematic viscosity that the particle experiences in the embedding medium.
We observe that

σrk σ̇rk =
1
2
∂

∂t
σ2

rk

and integrate eq. (14) within the time interval [t0, t0 + ∆t]. The result may be written

σrl σrk = δlk 2ν∆t (16)

where we have set σ2
rk(r, t0) = 0 in agreement with our assumption on σr(r, t0) above.

Eq. (16) represents Einstein’s famous law on the time dependence of the mean square diplacement of a
particle driven by a random force with a Gaussian distribution in a viscous medium.

The total displacement of the particle, σj , is given by σrj + σcj . When we form the ensemble average
of σjl σjk and exploit the fact that σcjl and σrjk are definitely uncorrelated, we may write the result

σl σk =
1∑N

j=1 εj(r, t)

N∑
j=1

εj(r, t)
(
σcjl + σrjl

) (
σcjk + σrjk

)
= σcl σck + σrl σrk . (17)

Below we shall be concerned with time-dependencies within intervals ∆t that are small but still large enough
to comply with the requirement (13). Without loss of generality we may also set σc k(r, t0) = 0 and then
expand σck(r, t0 + ∆t) only to linear order in ∆t:

σck(r, t0) = σ̇ck(r, t0)∆t . (18)
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As σcl and σck are uncorrelated for l �= k, eq. (17) may be given the form

σl σk = δlk
(
2ν∆t+ σ̇2

ck ∆t2
)

(19)

where eqs. (16) and (18) have been used. This result may be cast in a form that will prove particularly suited
for the ensuing considerations.

Let PB(r, σ, t,∆t)d3σ be the probability of finding a particle after the elapse of time ∆t in d3σ around
a position r + σ if it was definitely at r at time t. This probability is normalized∫

PB(r, σ, t,∆t)d3σ = 1 . (20)

Using these properties we obtain

1∑N
j=1 εj(r, t)

N∑
j=1

εj(r, t)σjl(t+ ∆t)σjk(t+ ∆t) = σl(r, t+ ∆t)σk(r, t+ ∆t)

=
∫
σlσkP

B(r, t,∆t)d3σ ,

and hence eq. (19) can be cast as∫
σl σk P

B (r, σ, t,∆t) d3σ = δlk
(
2ν∆t+ σ̇2

ck ∆t2
)
. (21)

4 The Fokker-Planck equation

As follows immediately from the definition of PB(r, σ, t,∆t), the following equation holds

ρ(r, t+ ∆t) =
∫
ρ (r − σ, t)PB (r − σ, σ, t,∆t) d3σ (22)

which is known as the Smoluchowski equation [31]. Here ρ(r, t + ∆t) denotes the probability density of
finding the particle within the elementary cube around r at time t. This density is normalized to unity within
the fundamental volume V .

We approximate the σ-dependence of the function

G (r − σ, σ, t,∆t) = ρ (r − σ, t)PB (r − σ, σ, t,∆t)

by a Taylor polynomial of second power

G (r − σ, σ, t,∆t) = G (r, σ, t,∆t) −
3∑

k=1

σk
∂

∂xk
G (r, σ, t,∆t) + 1

2

∑
l,k

σl σk
∂2

∂xl ∂xk
G (r, σ, t,∆t)

and insert this expression under the integral in eq. (22). We thus obtain

ρ(r, t+ ∆t) = ρ(r, t) −
3∑

k=1

∂

∂xk

[
ρ(r, t)

∫
σk P

B (r, σ, t,∆t) d3σ

]

+ 1
2

∑
l,k

∂2

∂xl ∂xk

[
ρ(r, t)

∫
σl σk P

B (r, σ, t,∆t) d3σ

]
(23)
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where we have used the normalization (20).
Because of

σk = σrk + σck

and ∫
σrk P

B (r, σ, t,∆t) d3σ = 0 ,

the second integral on the rhs yields∫
σck P

B (r, σ, t,∆t) d3σ = vck(r, t̄)∆t

where vc is the convective velocity associated with σc, and t̄ is a suitably chosen time out of the interval
[t, t+ ∆t].

The third expression on the rhs of eq. (23) contains the integral (21). Dividing by ∆t we obtain in the
limit ∆t → 0

∂ ρ

∂ t
+ div(ρvc) − ν∆ρ = 0 . (24)

This represents the so-called Fokker-Planck equation [32] which is a special case of Kolmogorov’s second
differential equation [33] derived considerably later. For vc = 0 eq. (24) reduces to the equation of diffusion

∂ ρ

∂ t
= ν∆ ρ .

In deriving eq. (24) one should keep in mind that it is actually inadmissible to let ∆t go to zero because it
is conflict with the coarse graining requirement (13). Eq. (24) and everything that follows should therefore
taken with caution. It is exactly this point which will prove crucial in combining the behavior of the A-and
the B-system to accomplish a modification of particle motion by reversible scattering.

Apart from eq. (24) the temporal changes of ρ(r, t) must also obey the continuity equation

∂ ρ

∂ t
+ div j = 0 (25)

which preserves the number of particles of the ensemble.
We define a diffusive (or “osmotic”) current density by

jd = j − jc (26)

connected with an osmotic velocity u

jd = ρu (27)

in analogy to

j = ρv . (28)

Eqs. (24) and (25) are simultaneously satisfied if

jd = −ν∇ρ (29)

which is Fick’s law.
From eqs. (24) to (29) we thus obtain

v = vc + u (30)

and

u = −ν 1
ρ

∇ρ . (31)
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5 The Navier-Stokes equation

Similar to the temporal changes of ρ(r, t) one can calculate the changes of ρ(r, t)vc(r, t) by again exploiting
the properties of PB(r, σ, t,∆t). In the absence of an external force field we have

ρ(r, t+ ∆t)vck(r, t+ ∆t) =
∫
ρ (r − σ, t) vck (r − σ, t)PB (r − σ, σ, t,∆t) d3σ . (32)

Again, we expand the σ-dependence of the integrand

Ĝ (r − σ, σt,∆t) = ρ (r − σ, t)v (r − σ, t)PB (r − σ, σ, t,∆t)

to first order in σ which, on insertion into eq. (32), yields

ρ(r, t+ ∆t)vck(r, t+ ∆t) − ρ(r, t)vck(r, t)

= −∆t div(ρ vck vc) + ∆t ν∆(ρ vck) +
(∆t)2

2

∑
k

v2
ck

∂2(ρ vck)
∂x2

k

. (33)

The expression on the lhs of this equation represents the change of the convective current density of the
particle momentum at r within ∆t seconds . This change is solely caused by scatterings from outside cubes
into the cube around r and vice versa. For this reason we label the partial derivative ∂/∂t which we obtain
after division by ∆t and letting ∆t tend to zero by the subscript “scatt.”. Hence we get

∂ρ vck

∂t

∣∣∣∣
scatt.

= − div(ρvck vc) + ν∆(ρ vck), (34)

which analogous to eq. (24) where only ρ has been replaced by ρ vck.
In the presence of an external force field F(r) there is an additional contribution to the change of the

momentum current density given by

∂ρ vck

∂t

∣∣∣∣
force

= f̂k(r) (35)

where

f̂k(r) =
1
m0

ρ(r)Fk(r) (36)

denotes the mass-referenced force density. Summing the two contributions (34) and (35) we obtain

∂ρ vck

∂t
= − div(ρvck vc) + ν∆(ρ vck) + f̂k

which can be recast as

vck

[
∂ρ

∂t
+ div(ρvc) − ν∆ρ

]
+ ρ

[
∂vck

∂t
+ (vc · ∇)vck − ν∆vck − 2ν

1
ρ

∇ρ·∇vck

]
= f̂k (37)

where we have used

∆(ρ vck) = ρ∆vck + vck ∆ρ+ 2 ∇vck · ∇ρ
and

∂ρ vck

∂t
= ρ

∂vck

∂t
+ vck

∂ρ

∂t
.
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Because of the Fokker-Planck equation (24) the first bracketed expression equals zero. If we, furthermore,
use the definitions (31) and (36) of u and f̂k, respectively, eq. (37) may be rewritten

∂vc

∂t
+ (vc + 2u) · ∇vc − ν∆vc =

1
m0

F(r). (38)

It should be noticed that the above procedure amounts to replacing the transtion probability PB(r −
σ, σ, t,∆t) by expressions of vc and u which contain equivalent information about the ensemble.

In a fluid medium with a mass density ρ̂(r, t) = m0 ρ(r, t) the force acting on the elementary cube is
given by

ρF(r, t) = −∇p(r, t)

where p is the pressure. In practice, the osmotic velocity u may be neglected compared to vc so that eq. (38)
attains the well known form of the Navier-Stokes equation

ρ̂
∂vc

∂t
+ ρ̂ (vc · ∇vc) − µ∆vc + ∇p = 0 (39)

whereµ = ν ρ̂. We have for simplicity also assumed that there is no external force. Our derivation of eq. (39)
is esssentially identical with that given by Gebelein [34].

For the objective of the present article the occurrence of the osmotic velocity u is absolutely vital.
Moreover, it is advisable to express the convective velocity vc by the total velocity v = vc + u. Eq. (39)
then reads

∂

∂t
(v − u) + [(v + u) · ∇(v − u)] − ν∆(v − u) =

1
m0

F(r). (40)

The external force effects an acceleration σ̈f = F/m0 of the j-particle and thereby a change of its kinetic
energy within ∆t seconds

∆E(j)
kin. = ∆t

3∑
k=1

Fk σ̇jk = ∆tm0

3∑
k=1

σ̈jk σ̇jk = ∆t
m0

2
d

d t
σ̇2

j .

On forming the ensemble average and using eqs. (7) and (11)

σ̇2 = σ̇2
c + σ̇2

r ; σ̇2
r = 3

kB T

m0
−→ ∂

∂t
σ̇2

r = 0 ,

we obtain after time integration

Ekin. =
m0

2
v2

c where vc = vc(r, t) .

Thus, the kinetic energy becomes

εkin.(r, t) =
m0

2
ρ(r, t)

[
vB

c (r, t)
]2
. (41)

Here we have added the superscript B to characterize vc(r, t) as being associated with the Brownian
ensemble.
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6 The motional behavior of a quantum mechanical particle

As already alluded to in Sect. 2 we subdivide the ensemble of N one-particles systems into a Brownian
sub-ensemble “B” where each particle obeys the Langevin equation (6) for a time interval of ∆t seconds
where ∆t 	 τ , and into an anti-Brownian sub-ensemble “A” where the motion of each particle is governed
by

m0 σ̈jk − m0

τ
σ̇jk = Fjk + FA

rjk(t) (42)

In principle, all previous considerations in deriving eq. (40) carry over to the present case where only ν and
– consequently – u change their sign:

∂

∂t
(v + u) + [(v − u) · ∇(v + u)] + ν∆(v + u) =

1
m0

F(r). (43)

It has to be observed, however, that the Smoluchowski equation (32) must be replaced by

ρ(r, t− ∆t)vck(r, t− ∆t) =
∫
ρ (r + σ, t) vck (r + σ, t)PA(r + σ,−σ, t,−∆t)d3σ ,

where −σ stands in place ofσ and −∆t in place of ∆twhich amounts to reconstructingρ(r, t−∆t)vck(r, t−
∆t) fromρ(r+σ, t)vck(r+σ, t)by following the scatterings within the time interval of ∆t seconds backward
in time. Since one is now dealing with a system of negative kinematic viscosity (−1/τ leads to − ν) one
obtains from the above Smoluchowski equation∫

σl σk P
A (r + σ,−σ, t,−∆t) d3σ = −2 ν (−∆t) = 2 ν∆t

which is positive as before. As a matter of course, the mean square shift of a particle can only be positive.
That ν and u change sign, follows immediately from inspection of eq. (15) and eq. (31).

If one expresses u in eqs. (40), (43) by −ν∇ρ/ρ, one recognizes that there are four terms which scale
as ν and two terms are quadratic in ν. Hence, on forming the arithmatic mean of both equations the terms
linear in ν drop out and those quadratic in ν remain. We thus arrive at

∂

∂t
v + (v · ∇)v︸ ︷︷ ︸

= d
d t v

−(u · ∇)u + ν∆u =
1
m0

F(r). (44)

This differential equation describes the average behavior of the combined A-and B-subsystems, and, as
we shall demonstrate in the ensuing Sections, a frictionless particle motion despite the occurrence of the
kinematic viscosity. As ν was given by eq. (15):

ν =
kB T τ

m0

one recognizes that the numerator on the rhs has the dimension of an action. On the other hand, that product
describes the effect of vacuum fluctuations on the particle under study, no matter what the properties of
the particle are, concerning shape, mass and charge. It should therefore be a universal constant of that
dimension. Setting

�

2
= kB T τ −→ ν =

�

2m0
(45)

turns out to yield – at the non-relativistic level – complete agreement with the experiment, most notably
with the energy spectrum of the hydogen atom which has always served as an absolute gauge. Eq. (44) will
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prove to be equivalent to the one-particle Schrödinger equation. However, different from the latter, eq. (44)
allows an immediate transition to Newton’s second law by letting ν = �/2m0 tend to zero, which means
absence of vacuum fluctuations. In that case eq. (44) reduces to

d

d t
v =

1
m0

F .

In the forward direction of time eq. (43) describes the behavior of an ensemble that collects energy from
the vacuum as opposed to the B-ensemble governed by eq. (40) which diffuses energy into the vacuum.The
exchange of energy with the vacuum is connected with those terms in the two equations that are linear in
ν and hence drop out on forming the arithmetic mean of the two equations. The latter is done assuming
that the respective densities ρ(r, t) and velocities v(r, t) of the two sub-ensembles are equal. (Note: if
ρ(r, t) is the same in both systems, the absolute values of the osmotic velocities agree as well because of
u = −ν∇ρ/ρ. The different signs are explicitly taken care of in eq. (43).) But in uncritically forming that
average one obscures a crucial assumption that bears directly on the interchange of A- and B-particles. As
the two sub-ensembles obey their respective equations eq. (40) and (43), their time evolution is definitely
different. If one ensures that ρ(r, t) and v(r, t) of the two sub-ensembles agree at time t, this is no longer
the case after the elapse of a time ∆t 	 τ . To guarantee that the two ensembles start again with their
respective functions ρ(r, t) and v(r, t) being equal at t+∆t one has to exchange particles between the two
ensembles, for example, faster ones from A for slower ones from B until

vA(r, t+ ∆t) = vB(r, t+ ∆t).

Since the continuity equation holds for both sub-ensembles:

ρ̇A/B = − div (ρA/B vA/B)

their densities

ρA/B(r, t+ ∆t) = ρA/B(r, t) − ∆t div(ρA/B(r, t)vA/B(r, t))

agree to first order in ∆t if they and their respective velocities agree at time t.
It is exactly the above exchange of particles between the two sub-ensembles which mimics the memory

of the vacuum on the particle’s previous energy and momentum.
Since u is given by −ν∇ ρ /ρ, it is curl-free:

∇ × u(r, t) = 0, (46)

and for this reason we have

(u · ∇)u = − 1
2 ∇u2 . (47)

Furthermore ν∆u can be cast as

ν∆u(r, t) = −ν2 ∇ [∆ ln(ρ(r, t)/ρ0)] (48)

where ρ0 is a constant reference density without physical importance.
We can therefore rewrite eq. (44) in the form

d

d t
v(r, t) = −∇P (r, t) (49)

where

P (r, t) =
1
m0

V (r) − 1
2
u2(r, t) − ν2 ∆ ln(ρ(r, t)/ρ0).
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As has been shown by Helmholtz [35] in connection with treating vortices in ideal fluids, eq. (49) ensures
that v(r, t) is curl-free except for vortex lines where ∇ × v(r, t) is infinite. However∮

C

v(r, t) �= ∞ (50)

for any chosen contour encircling that line. We may therefore set

v(r, t) =
�

m0
∇ϕ(r, t) (51)

for any r different from points of the vortex line. As the solutions to eq. (44) are curl-free the motion of the
particle is frictionless.

7 Current density and expectation values of momentum,
angular momentum and kinetic energy

We have arrived at the result that the one-particle system under study can uniquely be described by two scalar
functions ρ(r, t) and ϕ(r, t). These two independent functions may be condensed into a complex-valued
scalar function

ψ(r, t) = ±
√
ρ(r, t) ei ϕ(r,t) . (52)

The ± sign in front of the square root has to be chosen such that ψ(r, t) remains differentiable at surfaces
where ρ(r, t) vanishes. It turns out that in such a case ρ is time-independent. If ρ(r) varies along a ξ-
coordinate axis perpendicular to that surface as (ξ − ξ0)2 near the zero ξ0 of ρ(r), ψ(r) would vary
as |ξ − ξ0| and would hence not be differentiable at ξ0 except one changes the sign in front of

√
ρ(r)

accordingly.
As ρ(r, t) and v(r, t) will in general be unique (and smooth) functions of r we require ψ(r, t) to have

the same property. In systems where V (r) is centro- or axi-symmetric, we may introduce spherical or
cylindrical coordinates r = (r, ϑ, φ) and r = (r, z, φ), respectively, with r = 0 referring to the center or
the axis. Uniqueness of ψ(r) then implies

ϕ(r, ϑ, φ+ 2π) = ϕ(r, ϑ, φ) + 2nπ and ϕ(r, z, φ+ 2π) = ϕ(r, z, φ) + 2nπ ,

where

n = 0, 1, 2, . . .

Thus, we have for any contour integral encircling a vortex line∮
c
∇ϕ(r) · dr = 2π n . (53)

Insertion of eq. (51) and multiplication by m0 yields∮
c
p(r) · dr = n 2π � where p = m0 v . (54)

Obviously, the integral represents the angular momentum of the particle around the vortex line, and eq. (54)
is therefore identical with the Bohr-Sommerfeld description for the quantization of angular momentum. In
case that V (r) is spherically symmetric, the vortex line is straight and becomes identical with the so-called
quantization axis.
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Setting

ψ = |ψ| ei ϕ

we recognize that

∇ψ = ψ

[
i∇ϕ+

1
|ψ| ∇|ψ|

]
.

Thus we have

ψ∗∇ψ = ρ

[
i∇ϕ+

1
|ψ| ∇|ψ|

]
and likewise

ψ∇ψ∗ = ρ

[
−i∇ϕ+

1
|ψ| ∇|ψ|

]
.

Subtraction of the latter expression from the former and muliplication by �/2m0 yields

j(r, t) =
�

2im0
[ψ∗∇ψ − ψ∇ψ∗] (55)

where we have used eq. (51) and the definition of the total current density:

j(r, t) = ρ(r, t)v(r, t). (56)

The quantitym0 j represents the momentum density jp whose real-space integral gives the total momentum
of the particle

<p(t)> =
∫

V

jp(r, t)d3r = 1
2

∫
V

ψ∗(r, t)p̂ψ(r, t)d3r − c. c. (57)

where p̂ is short-hand for

p̂ = −i �∇ . (58)

We have, furthermore, introduced brackets < > to make contact to the familiar notation in quantum
mechanics. Integration by parts of the second integral in eq. (57) yields the first integral with the opposite
sign. Thus we have

<p(t)> =
∫

V

ψ∗(r, t)p̂ψ(r, t)d3r , (59)

which suggests to term p̂ “momentum operator”.
To obtain the simple form of the second integral in eq. (57) in performing the integration by parts, ψ(r, t)

has to vanish sufficiently fast toward the surface of V as that volume goes to infinity. Otherwise it has to
fulfill periodic boundary conditions at the six faces of V which must have the form of a parallelepiped.

A free particle of a definite classical momentum is associated with an r−independent ensemble average
m0 v because the vacuum fluctuations can – on the average – not lead to a departure from its classical
momentum. If follows then from eq. (51)

ϕ(r) =
m0

�

∫ r

r0
v · dr′ =

m0

�
v · r − ϕ0
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where

ϕ0 =
m0

�
v · r0 .

Hence, we have from eq. (53)

ψ(r) = ei ϕ0
1√
V

ei k·r (60)

where k is defined as k = m0
�

v.
In a force-free volume V the vacuum fluctuations can shift the particle trajactory sideways at random,

and therefore its probability of position is the same everywhere so that ρ(r) = 1/V . As expressly stated
in Sect. 2, it would be physically meaningless to interpret eq. (60) as referring to a situation where “the
particle is a wave”.

The expectation value <L> of the angular momentum can be obtained in complete analogy to eq. (57)
by forming

<L(t)> =
∫

V

(r × jp(r, t))d3r =
∫

V

ψ∗(r, t)(r × p̂)ψ(r, t)d3r . (61)

It is therefore plausible to name

L̂ = r × p̂

“angular momentum operator”.
We finally consider the kinetic energy density which is given by eq. (41) for the B-ensemble

εBkin. = m0
ρ

2

[
vB

c

]2

and accordingly

εAkin. = m0
ρ

2

[
vA

c

]2

for the A-ensemble. From eq. (30) we have

vB
c = v − u and correspondingly for the A-ensemble: vA

c = v + u

Thus, the arithmetic mean of the two expressions becomes

εkin. = m0
ρ

2
(
v2 + u2) . (62)

We may recast eq. (52) as

ln(ψ/
√
ρ0) = 1

2 ln(ρ/ρ0) + i ϕ ,

multiply this equation by �/m0 and form the gradient. Because of eq. (30) and (51) defining u and v the
result can be written

�

m0

1
ψ

∇ψ = −u + iv . (63)

The square modulus of this equation, muliplied by m0 ρ/2 is obviously identical with the kinetic energy
density:

εkin.(r, t) =
�

2

2m0
|∇ψ(r, t)|2 . (64)
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Hence the kinetic energy is given by

Ekin. = <T> =
∫

V

�
2

2m0
∇ψ∗(r, t) · ∇ψ(r, t)d3r . (65)

Invoking Green’s theorem the integral can be rewritten∫
V

�
2

2m0
∇ψ∗(r, t) · ∇ψ(r, t)d3r =

∫
V

ψ∗(r, t)
[
− �

2 ∇2

2m0

]
ψ(r, t)d3r ,

and we arrive at

<T> =
∫

V

ψ∗(r, t)
p̂2

2m0
ψ(r, t)d3r (66)

which justifies terming

T̂ =
p̂2

2m0
= − �

2 ∇2

2m0
(67)

the “operator of kinetic energy”. It should be recognized, however, that the integrand of eq. (66) will in
general not be real-valued any more, as opposed to the integrand in eq. (65) which one obtains primarily. It
is, furthermore, worth noticing that the operators p̂, L̂ and T̂ appear at a stage of the derivation where one
has not yet arrived at the Schrödinger equation.

8 The time-dependent Schrödinger equation

The crucial eq. (49) may be regarded as the quantum mechanical modification of Newton’s second law. We
rewrite this equation in the form

∂

∂ t
v = − 1

m0
∇V − 1

2 ∇v2 + 1
2 ∇u2 − �

2m0
∆u . (68)

The osmotic velocity u was defined via Fick’s law by eq. (30) which we cast as

u = − �

2m0
∇ ln(ρ/ρ0). (69)

Time differentiation yields

∂

∂ t
u = − �

2m0
∇

(
∂ ρ

∂ t
/ρ

)
, (70)

where ∂ ρ/∂ t can be eliminated by using the continuity equation (25). That gives

− �

2m0
∇

(
∂ ρ

∂ t
/ρ

)
=

�

2m0
∇ div v − ∇

[
v ·

(
− �

2m0

1
ρ

∇ρ
)]

.

Because of eq. (69) the bracketed term on the rhs may be replaced by v · u. As v is curl-free, the first term
on the rhs is just �/2m0 ∆v, and hence one gets as an equivalent of eq. (69)

∂

∂ t
u =

�

2m0
∆v − ∇(u · v). (71)
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If we multiply eq. (68) by the imaginary unit i and subtract eq. (71) we obtain

∂

∂ t
(−u + iv) = − i

m0
∇V − i

2
∇v2 +

i

2
∇u2 − i

�

2m0
∆u − �

2m0
∆v + ∇(u · v)

or after reordering on the right

∂

∂ t
(−u + iv) =

i

2
∇(−u + iv)2 +

i �

2m0
∇ [∇(−u + iv)] − i

m0
∇V . (72)

From eq. (63) we have

�

m0
∇ (

lnψ/
√
ρ0

)
= −u + iv (73)

which we insert into eq. (72). Interchanging the operators ∂/∂ t and ∇ on the lhs one gets

∇
(

�

m0

1
ψ

∂ ψ

∂ t

)
= ∇

[
i

2
�

2

m2
0

{(
1
ψ

∇ψ
)2

+ ∇ ·
(

1
ψ

∇ψ
)}

− i

m0
V

]
.

If the gradient of two functions are equal then the functions can only differ by a time-dependent real-space
independent function which we denote by β(t). Hence, we have after division by i:

−i �

m0

1
ψ

∂ ψ

∂ t
=

1
2

�
2

m2
0

[(
1
ψ

∇ψ
)2

+ ∇ ·
(

1
ψ

∇ψ
)]

− i

m0
V − i β(t) . (74)

We observe that

∇ ·
(

1
ψ

∇ψ
)

= −
(

1
ψ

∇ψ
)2

+
1
ψ

∇2ψ

and multiply eq. (74) by −m0 ψ, which gives

i�
∂ ψ

∂ t
= − �

2∇2

2m0
ψ + V ψ + γ(t)ψ (75)

where

γ(t) = im0 β(t).

If we now replace ψ(r, t) by ψ̂(r, t) defined through

ψ(r, t) = ψ̂(r, t) exp

[
− i

�

∫ t

t0

γ(t′)dt′
]

(76)

eq. (75) turns into a differential equation for ψ̂(r, t):

i�
∂ ψ̂(r, t)
∂ t

=
[

p̂2

2m0
+ V (r)

]
ψ̂(r, t), (77)

where we have used eq. (67) to express −�
2∇2/2m0. The total energy of the particle is given by

E = Ekin. +
∫
ρ(r, t)V (r)d3r .
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Using eq. (66) we may rewrite this expression

E =
∫
ψ∗(r, t)

[
p̂2

2m0
+ V (r)

]
ψ(r, t)d3r =

∫
ψ∗(r, t)Ĥψ(r, t)d3r .

We are therefore justified in terming

Ĥ(r) =
p̂2

2m0
+ V (r) (78)

“total energy operator” or “Hamilton operator”.
Eq. (77) represents the time-dependent Schrödinger equation. The functions ψ(r, t) and ψ̂(r, t) differ

by a phase factor which is of no physical importance because the only relevant information on the state of
the system is connected with

ρ(r, t) = ψ∗(r, t)ψ(r, t) = ψ̂∗(r, t)ψ̂(r, t) and j(r, t) = ρ(r, t)∇ϕ(r, t).

Neither expression depends on this phase factor. We may therefore justifiably ignore the distinction between
ψ(r, t) and ψ̂(r, t). It is worth noticing that the occurrence of the first order time-derivative in the Schrödinger
equation (77) can be traced back to ∂ v/∂ t in Newton’s modified second law eq. (68) and to ∂ u/∂ t in the
equation of diffusion (70).

9 The Schrödinger equation in the presence
of an external electromagnetic field

Reexamining the various steps in the derivation of the Schrödinger equation (77) one notices that all
considerations remain unaffected if one allows the external force to be time-dependent: F = ∇V (r, t). As
a matter of principle, Newton’s modified second law in the form of eq. (44) holds also in the presence of a
magnetic field B(r, t), except that F is now given by

F = e Ê(r, t) + ev(r, t) × B(r, t). (79)

Let A(r, t) be the vector potential associated with B(r, t):

B(r, t) = ∇ × A(r, t). (80)

We recall the property of the contour integral∮
C

p(r, t) · dr = 0 (81)

if the integration path does not encircle a vortex line and if there is no magnetic field.
By switching on a magnetic field one induces a circular voltage along the contour:∮

C

Êind.(r′, t) · dr′ = − ∂

∂ t

∫
A

B(r′, t) · d2r′

where A is the area circumscribed by the contour. Using Stoke’s theorem and muliplying by e we may
rewrite this equation:∮

C

e Êind.(r′, t) · dr′ = − ∂

∂ t

∮
C

eA(r′, t) · dr′ .
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The integrand on the lhs describes an additional force Find.(r′, t) acting on the charged particle and effecting
a change of the particle’s momentum:∮

C

ṗ(r′, t′) · dr′ =
∮

C

e Êind.(r′, t′) · dr′ = − ∂

∂ t′

∮
C

eA(r′, t′) · dr′ .

We perform a time integration of this equation from t′ = t0 to t and observe that A(r′, t0) ≡ 0. The result
may be cast as∮

C

p(r′, t) · dr′ = −
∮

C

eA(r′, t) · dr′

or alternatively∮ [
v(r′, t) +

e

m0
A(r′, t)

]
· dr′ = 0 equivalent to ∇ ×

[
v(r, t) +

e

m0
A(r, t)

]
≡ 0 .

Hence, v + e
m0

A must be expressible as a gradient of a scalar function which we write (�/m0)ϕ(r, t) :

v(r, t) +
e

m0
A(r, t) =

�

m0
∇ϕ(r, t). (82)

This relation replaces the previous eq. (51) for zero magnetic field. By contrast, eq. (70) for the osmotic
velocity remains unaffected by the presence of the magnetic field. As a consequence of the fact that v(r, t)
is no longer curl-free, the expression (v · ∇)v in eq. (44) becomes now slightly more complicated:

(v · ∇)v = 1
2 ∇v2 − v × (∇ × v) = 1

2 ∇v2 +
e

m0
v × (∇ × A)

which, on substituting ∇ × A by B, may be recast as

(v · ∇)v = 1
2 ∇v2 +

e

m0
v × B .

If this is inserted into eq. (44) where F is given by eq. (79), the Lorentz force ev × B drops out, and we
obtain

∂

∂ t
(v +

e

m0
A) = − 1

2 ∇V − 1
2 ∇v2 + 1

2 ∇u2 − �

2m0
∆u (83)

where V = e V̂ . On multiplying eq. (83) by i and subtracting the unaffected eq. (71) we obtain in complete
analogy to eq. (72)

∂

∂ t

[
−u + i(v +

e

m0
A)

]
=
i

2
∇(−u + iv)2 +

i �

2m0
∇ [∇(−u + iv)] − i

m0
∇V. (84)

Since v is no longer ∝ ∇ϕ but has to expressed with the aid of eq. (82), we have instead of eq. (73)

�

m0
∇ (

lnψ/
√
ρ0

)
= −u + i

(
v +

e

m0
A

)
. (85)

The lhs of eq. (84) may hence be expressed by using

∂

∂ t

�

m0
∇ (

lnψ/
√
ρ0

)
= ∇

(
1

m0 ψ
�
∂

∂ t
ψ

)
. (86)
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In rearranging the rhs we observe that

−u + iv =
�

m0
∇ (

lnψ/
√
ρ0

) − i
e

m0
A

and obtain for the first term on the rhs of eq. (84)

i

2
∇(−u + iv)2 =

1
2

�
2

m2
0
∇ [∇ ln

(
ψ/

√
ρ0

)]2 − i
�

m0

e

m0
∇ [

A · ∇ ln
(
ψ/

√
ρ0

)] − 1
2

∇
(

e

m0
A

)2

.

Using

∇ [∇ ln
(
ψ/

√
ρ0

)]
=

1
ψ

∆ψ − [∇ ln
(
ψ/

√
ρ0

)]2
we can cast the second term on the rhs of eq. (84)

�

2m0
∇ [∇(−u + iv)] = − 1

2
�

2

m2
0

∇ [∇ln (
ψ/

√
ρ0

)]2 + ∇
[

1
ψ

(
1
2

�
2

m2
0

∆ψ − �

2m0

e

m0
ψ∇ · A

)]
.

We thus get

i

2
∇(−u + iv)2 +

i �

2m0
∇ [∇(−u + iv)]

= −i∇
[

1
m0 ψ

(
− �

2

2m0
∆ψ + i

�

2
e

m0
∇ · A + i�

e

m0
A · ∇ +

1
2m0

(eA)2
)
ψ

]
which on introducing p̂, as defined by eq. (58), may be compactified in the form

i

2
∇(−u + iv)2 +

i �

2m0
∇ [∇(−u + iv)] = −i∇

[
1

m0 ψ

(p̂ − eA)2

2m0
ψ

]
.

If this inserted into eq. (84) and ∂/∂ t [−u + i(v + (e/m0) A)] substituted by using eqs. (85) and eqs. (86)
we obtain[

P̂2

2m0
+ V (r, t)

]
ψ(r, t) = i �

∂

∂ t
ψ(r, t)

where

P̂ = p̂ − eA(r, t)

which represents the time-dependent Schrödinger equation in the presence of an electromagnetic field.
Newton’s modified law (44), which has been the starting point of our derivation, contains via eq. (79)

explicitly the magnetic field in terms of the Lorentz force ev×B. From this point of view it is very surprising
that this equation of motion transforms into a time-dependent Schrödinger equation where B(r, t) does no
longer appear, but A(r, t) instead. This gives rise to unexpected phenomena, most notably to the so-called
Aharonov-Bohm effect [36]. The puzzling role played by the vector potential in the quantum mechanical
motion of particles is strikingly illustrated by a two-slit experiment where each beam, associated with the
pertinent slit, runs through a region where B(r) = 0 but A(r) �= 0. This is achieved by placing a sufficiently
long solenoid between the beams which creates a magnetic field only inside the solenoid. Hence, there can
be no magnetic force acting on the beams. Nevertheless, when the two beams merge behind the solenoid,
they display an interference pattern which shifts as A increases. This was most convincingly demonstrated
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by Möllenstedt and Bayh [37]. An earlier experiment by Chambers [38] who used an iron whisker instead
of a solenoid, had already revealed the presence of interference fringes but could not demonstrate the
dependence on the magnitude of A.

A vital point in our derivation was the occurrence of a circular electric field Êind.(r, t) within some time
interval during which the magnetic field builds up. All charged elementary particles in the region of space
where Êind.(r, t) �= 0 are affected in their motional state as Êind imparts a momentum on them within
that time interval. Since the embedding vacuum is frictionless, this information cannot get lost. We can
demonstrate this by a thought experiment where one places an electron in a toroidal potential so that it can
only move within a torus and set up a stationary circular current. For simplicity we assume that current to
be equal to zero in the beginning. The torus encircles a sufficiently long solenoid which ensures that the
magnetic field is completely confined the interior of the solenoid. We consider two of such set-ups: one
that contains an electron, the other one is still empty. If one now turns on the magnetic field and waits until
B(r, t) has become stationary in both solenoids, the electron in the first torus has picked up an angular
momentum∮

C

p(r) · dr = −
∮

C

eA(r) · dr .

We now slowly feed the other electron into the second torus such that it would not set up any current if A(r)
were zero. However, in the spirit of our derivation it must attain a state with the same angular momentum as
the first electron, although it does not experience any electric field Êind.. But the energy fluctuations in the
embedding vacuum are such that the particle is driven into that state. This is remotely similar to a particle
that has been placed into a harmonic oscillator potential at a position where the potential is lowest. The
vacuum fluctuations force the particle into a state where its average energy is 1

2 �ω0.
If the vacuum would not transfer the angular momentum ∝ |A|, one would run into an inconsistency if

the magnetic field would be turned off. Now an electric field Êind. would act on the second electron and
impart an angular momentum on it. One would hence end up with a situation where an electron of primarily
zero kinetic energy attains a state of finite angular momentum in a space that is definitely field-free and
where another electron in an identical torus would have zero angular momentum in a state of zero energy.

10 Objections raised against Nelson’s theory

We confine ourselves here to only one article by Mielnik and Tengstrand [39] which presents some apparently
serious reservations against Nelson’s theory. Objections made by other authors over the years revolve around
the same or similar questions.

Mielnik and Tengstrand state that “the effects observed in quantum physics cannot be explained by
assuming an interaction between many trajectories of different mass points.” As we have emphasized in
our derivation, it is absolutely crucial that particles of the A- and B-system have to be interchanged after
each time step. This might look like an interaction between the particles of different trajectories, but it is
only a trick to mimic the reversibility in the scattering of the particle under study. If there were a formalism
available that would allow one to directly describe reversible scattering without the detour via ensemble
subdivision and particle interchange, each particle would just follow one trajectory. Reversible scattering
represents manifestly a non-classical phenomenon, and hence certain features lack comparability with
irreversible scattering as with the Brownian motion of a particle. But still, the notion of particle trajectories
and the ensemble-referenced quantities ρ(r, t) and v(r, t) are common elements of these different types of
stochastic particle motion.

The fundamental equation of motion (44) as a modification of Newton’s second law results from an
input/output balance of the momentum flux density for a single cube ∆3rν . This is in complete analogy to
the derivation of Euler’s equation in hydrodynamics. Solutions to the latter are, for example, unattenuated
waves that fill the entire space absorbed by the fluid under study. A portion of the fluid that occupies the cube
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∆3rν and undergoes changes of its density and velocity in that cube, feels indirectly the respective changes
in other cubes regardless how distant they are. Because of the removal of dissipative effects, solutions
to our eq. (44) have therefore analogous properties. Mielnik and Tengstrand discuss a hypothetical two-
slit experiment where one has placed a thin wall between the two beams which separates them over a
long distance. The authors claim that Nelson’s theory would be unable to explain the occurrence of an
interference of the two beams when they merge again at the end of the separating wall. In the light of the
foregoing consideration this is simply incorrect.

A seemingly disastrous objection of the authors concerns excited states. As is obvious from our funda-
mental equation (44) which contains ∂/∂ t as a clear indication of its origin from Newton’s second law,
this equation describes in general a time-dependent one-particle system. In other words, it will in general
describe a non-equilibrium state, distinctly in contrast to what Mielnik and Tengstrand claim. If a theory
yields a coherent derivation of the time-dependent Schrödinger equation, it is exceedingly puzzling to read
statements like that:“The properties of non-equilibrium states in Nelson’s theory are left somewhat obscure”.
However, as regards excited pure states the authors touch upon a serious problem: an excited pure state will
in general possess one or several nodal surfaces where the diffusive current density jd(r) = −(�/m0)∇ρ(r)
vanishes. Hence, if the particle moves in a spatial region beyond such a surface it would never be able to
cross that surface and reach the space on the other side of the surface, which seems implausible and is
unphysical in the end. Yet, the preparation of a pure state, whose energy is sharply defined, is impossible
in practice, because it would require an infinite preparation time. All experiments that are aimed at exci-
tations into well defined states are actually dealing with a linear combination of pure states (multiplied by
their time-dependent exponential function). This linear combination solves the time-dependent Schrödinger
equation, but it yields a density that does not possess surfaces any more where the density vanishes. A “pure
state” is in practice always a linear combination of this kind where one term has particularly large weight.
The true world of excited states invalidates the objection of Mielnik and Tengstrand.

11 The issue of hidden variables

In the spirit of J. v. Neumann’s proof [40] on the non-existence of hidden variables in quantum mechanics
Nelson’s theory has to be regarded as a hidden variable theory. The real-space coordinates of the individual
particles defining the fundamental ensemble represent “hidden variables” because they do not appear any
more once we have arrived at the functions ρ(r, t), u(r, t) and v(r, t) and the partial differential equa-
tions (68) and (70).This carries over to the time-dependent Schrödinger equation which, together with
ψ(r, t) = ±√

ρ(r, t) exp[i ϕ(r, t)], only compactifies these pieces of information and their differential
equations.

It has firmly been believed for 34 years that v. Neumann’s fundamental book [40] on the foundation
of quantum mechanics contained a solid mathematical proof that there can be no hidden variables theory
in quantum mechanics. That there was an error in v. Neumann’s interpretation of his proof was shortly
later analyzed in a paper by Grete Hermann [43]. However, the article remained unnoticed. In 1966 John
Bell rediscovered that v. Neumann’s proof contained serious flaws, a fact that he later summarized in an
interview by stating:“The proof of v. Neumann is not merely false but foolish!” Bell himself proved two
no-hidden variables theorems [41,42] which, however, do not call theories of the Bohm- or Nelson-type into
question. We therefore wish to leave it at that and take a remark by Mermin [44] (in reference to John Bell)
as indirectly giving support to Nelson’s approach :“None of the no-hidden variables theorems persuaded
him that hidden variables were impossible.”

12 The time-dependent N -particle Schrödinger equation

The conclusions we went through in deriving the one-particle Schrödinger equation carry over to the N -
particle case point by point provided that the particles interact via two-body forces. One only has to substitute
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the 3-dimensional configuration space of the pertinent point particle by a 3N-dimensional space where N
particles appear again as one point. In analogy to ρ(r, t)d3r we now have

ρ(r1, r2, . . . rN , t) d3r1 d
3r2 . . . d

3rN

which is the probability of finding at time t particle number 1 at r1, particle number 2 at r2 and so on.
Abbreviating

rN = (r1, r2, . . . rN ) =
N∑

j=1

3∑
k=1

xjk ejk where j = 1, 2, . . . N and k = 1, 2, 3

with xjk denoting cartesian coordinates associated with orthogonal unit vectors ejk. The quantities ∇N ,
uN and vN are defined analogously.

The scalar function φ(rN , t) stands now in place of ϕ(r, t), and hence

vN (rN , t) =
�

m0
∇N φ(rN , t)

Furthermore we have

uN (rN , t) = − �

2m0
∇N ln

[
ρ

(
rN , t

)
/ρ0

]
The external generalized force FN

ext.(r
N , t) that acts on the system may be written

FN
ext.(r

N , t) =
N∑

j=1

3∑
k=1

F ext.
k (rj , t)ejk

where

F ext.
k (rj , t) = − ∂

∂xjk
Vext.(rj , t)

with Vext.(r, t) denoting the external potential. Hence FN
ext. may alternatively be written

FN
ext.(r

N , t) = −∇N V̂ext.(r1, r2, . . . rN , t)

where

V̂ext.(r1, r2, . . . rN , t) =
N∑

j=1

Vext.(rj , t).

The force that acts on the j-th particle due to pair-interaction is given by

F inter
jk (rj) = − ∂

∂ xjk

N∑
i=1
i �=j

V (|rj − ri|)

with V (|rj − ri|) denoting the interaction potential. The total generalized force FN (rN , t) may therefore
be cast as

FN (rN , t) = −∇N V̂ (r1, r2, . . . rN , t)
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where

V̂ (r1, r2, . . . rN , t) =
N∑

j=1

Vext.(rj , t) + 1
2

N∑
j=1

N∑
i=1
i �=j

V (|rj − ri|).

Newton’s modified second law in the form of eq. (68) now reads

∂

∂ t
vN = − 1

m0
∇N V̂ − 1

2 ∇N
(
vN

)2 + 1
2 ∇N

(
uN

)2 − �

2m0

(∇N
)2

uN .

Likewise one obtains the analogue to eq. (70).
Again we form a complex-valued function Ψ(r1, r2, . . . rN , t) from the two scalar functions ρ(rN , t)

and φ(rN , t) according to

Ψ(r1, r2, . . . rN , t) = ±
√
ρ(r1, r2, . . . rN , t) exp

[
i φ((r1, r2, . . . rN , t))

]
.

Starting, as before, from the equations for ∂ vN

∂ t and ∂ uN

∂ t , and going through completely analogous ma-
nipulations we arrive at the time-dependent N -particle Schrödinger equation[

Ĥ0 + 1
2

∑
i,j
i �=j

V (|rj − ri|)
]

Ψ(r1, r2, . . . rN , t) = i �
∂

∂ t
Ψ(r1, r2, . . . rN , t)

where
Ĥ0 =

N∑
j=1

[
p̂2

j

2m0
+ Vext.(rj , t)

]
,

which can be generalized to include magnetic fields. In that case P̂j = p̂j − eA(rj , t) stands in place of
p̂j .

There is an important point that deserves particular attention. If an N -electron system is in a state that
carries electric current, A(rj) contains a contribution

A′(rj) ∝
∫

je(r′)
|rj − r′| d

3r′

where je is the current density given by

je(r) =
e �

2 im0
N

∫
[Ψ∗(r, r2, . . . rN )∇Ψ(r, r2, . . . rN − c. c.] d3r2 d

3r3 . . . d
3rN

+
e2

m0
N

∫
|Ψ(r, r2, . . . rN )|2A(r) d3r2 d

3r3 . . . d
3rN

which means that P̂j is now state-dependent, thereby invalidating the superposition principle for states
that are solutions to the associated Schrödinger equation. This calls alternative foundations of quantum
mechanics into question that are fundamentally tied to the superposition principle.

This article is based on a manuscript by Jutta Aschenbach: “Staatsexamensarbeit” (a required academic thesis for the
secondary school teaching physics), Technische Universität Clausthal, Germany (1978)).
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