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1. Introduction

The bulk of the literature on ferromagnetic and antiferromagnetic order refers to the-
ories that are based on a variety of model Hamiltonians. The development in the past
has strongly been influenced by the Heisenberg and Ising models [1, 2]. More advanced
treatments hinge on modifications of the Hubbard model, see e.g. Nolting and Borgieø
[3]. A common feature of these models is that they either correlate magnetic order with
the existence of localized moments (Heisenberg, Ising) or use at least a description of
the electronic interactions in terms of atomic orbitals that pertain to the constituent
atoms of the material in question. (For a general survey, see Gubanov et al. [4], White
[5], Yosida [6] and Moriya [7].)

The Heisenberg model is predicated on the idea that the relative spin orientation of
neighboring atoms is essentially determined by the energy difference between bonding
and antibonding states formed from the orbitals of these atoms. The ªexchange inte-
gralº which plays the key role in that model relates directly to that energy difference.
However, calculations on the exchange integral for concrete ferromagnetic systems
yield often values that are too small or even give the wrong sign [8].

As will become evident from our first-principles approach, ferromagnetic order is pri-
marily a consequence of Hund's rule. In the case of single atoms of which we choose the
example of the oxygen atom, the theory leads to the well known result that the atom
gains energy if one changes the spin-up/spin-down occupation of the 2p-level from a sym-
metric distribution to an unsymmetric 3 versus 1 occupation. The same mechanism is also
responsible for ferromagnetic order where the pertinent states are itinerant.

The main results which the present paper arrives at can be summarized as follows.
1. A first-principles theory that merely exploits the N-electron SchroÈ dinger equation

and the antisymmetry of the wavefunction leads necessarily to a band theory of mag-
netism irrespective of the strength of electron±electron correlation. Local moments can-
not occur in materials without lattice defects.

2. A non-relativistic theory of this kind can only give rise to collinear spin order.
Non-collinear spin order is generically connected to spin±orbit interaction.

3. The Stoner criterion for the instability of a paramagnetic material with respect to a
virtual change of the spin order can be extended to the case where paramagnetic and
ferromagnetic order coexist.

4. All 3d- and 4d-elemental metals order ferromagnetically or antiferromagnetically
when their lattices are expanded sufficiently. Conversely, any ferromagnetic or antifer-
romagnetic order disappears under sufficiently high pressure.

5. The occurrence of antiferromagnetic order is generally connected with Fermi sur-
face nesting and with the presence of a spin density wave. Fermi surface nesting reflects
the occurrence of an energy gap between bands that intersect at the Fermi level when
the system is artificially kept paramagnetic. If the point of intersection is only close to
the Fermi level the lattice undergoes an appropriate distortion that shifts this point to
the Fermi level. If one now allows for a build-up of antiferromagnetic order a gap
forms symmetrically around that point, thereby maximizing the energy gain that is asso-
ciated with the lowering of occupied states below the gap. Since the lattice symmetry is
slightly broken in that case, the total charge density is no longer invariant under the old
lattice translations. As a result, the spin density wave is now accompanied by a charge
density wave.
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6. The energy gap in a state of antiferromagnetic order can become so large that it
spreads across the entire Brillouin zone. In that case the build-up of antiferromag-
netic order turns an initially metallic conductor into an insulator. This will be demon-
strated for the example of strongly expanded potassium metal. It appears conceivable
that insulating transition metal oxides, e.g. CoO, and some undoped high-temperature
(high-Tc) superconductors present other examples of metal±insulator transitions of
this kind.

7. The spin-resolved densities prove to consist of a portion that is identical to that
obtained from the Kohn-Sham (KS-) determinant in density functional (DF-) theory,
plus a correction term which only vanishes if the KS-orbitals are generated in the exact
exchange±correlation potential. Since the latter is unknown any approximate KS-poten-
tial implies the occurrence of that correction term which is, however, generally ignored
because of its factual inaccessibility. The error introduced by this can be particularly
sizable with antiferromagnetic materials, notably transition metal oxides and high-Tc

superconductors whose magnetic moments and electronic conductivity are known to be
unsatisfactorily described by conventional DF-theory.

8. Molten metals can also order ferromagnetically if their Curie temperature lies
above their melting temperature.

Section 2 is devoted to a discussion of general aspects and earlier work. In Section 3
we outline the idea of formulating a non-relativistic N-electron theory within the frame-
work of a generalized density functional theory [9, 10] for spin-ordered systems. As will
be shown in Section 4, this scheme can be cast into a one-particle description analogous
to that of Kohn and Sham [11]. In Section 5 we briefly discuss a method of recasting
the Kohn-Sham scheme such that its key approximation becomes accessible to systema-
tic improvement. As an important consequence of these considerations we are led to
conclude that commonly used exchange±correlation potentials give rise to errors in the
spin-resolved densities and associated magnetic moments that may be particularly large
for antiferromagnetic materials. The energy balance governing the process of spin-order
will be the subject of Section 6. The functioning of the scheme is then demonstrated in
Section 7 where we discuss the example of the oxygen atom. The results prove to be
applicable to other atoms as well and can be interpreted in terms of Hund's rule. Sec-
tion 8 deals with the fundamental ground state problem of density functional theory
concerning the energetical order of the occupied one-particle states. Our scheme lends
itself to deriving a criterion for ferromagnetic instability which turns out to be identical
to Stoner's criterion. This will be the subject of Section 9. The problem of ferromagnet-
ism in molten metals is briefly addressed in Section 10. Section 11 is devoted to the
phenomenon of antiferromagnetic order. We discuss the crucial effect of Fermi surface
nesting. Since our scheme includes, in principle, the effect of electron correlation, it
applies to 4f-metals and their compounds as well, if the spin-order is not dominantly
influenced by spin±orbit coupling. Hence ±± in contrast to general belief ±± one is led to
conclude that these systems should be tractable within the same framework. Apart
from results on the 3d- and 4d-transition metals, this matter will be a subject of Section
12. In addition, we show for the example of K metal that the widely held opinion which
associates spin order with the presence of d- or f-electrons is not justified. Strongly
expanded K metal forms a perfect, either ferromagnetic or antiferromagnetic insulator.
In Section 13 we summarize the various aspects of both proven and still debatable
success.
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2. General Aspects and Relation to Earlier Work

The concept of itinerant or band magnetism was first put forward by Slater [12] and
later extended to finite temperatures by Stoner [13] and Wohlfarth [14]. Notwithstand-
ing the compelling nature of this concept and its quantitative success in its present-day
form of density functional (DF-) theory, the literature still echoes the impression that
local and itinerant magnetism are just limiting cases of truly existing systems of spin
order. This is manifested in a variety of puzzling statements in even very recent mono-
graphs on this subject, e.g. by Yosida [6]: ªThe ferromagnetism of these metals (Ni, Co
and Fe) appears superficially to be understood by the band theory. . .ª.

Distinctly different from the prevailing view that ferromagnetism is generally con-
nected to the exchange interaction of neighboring atoms, a first-principles DF-based
theory interconnects ferromagnetic order with itinerant states that experience spin-de-
pendent lattice potentials. The latter differ sizably for the two spin directions only with-
in each atom.

For the finite-temperature case it turns out that a first-principles treatment that only
allows for excitations into N-electron states solving the time-independent SchroÈ dinger
equation takes the form of a modified Stoner-Wohlfarth theory. This is at variance with
the experimental observations, most prominently with the fact that the Curie tempera-
tures come out far too high, see Gunnarsson [15]. An adequate theory of ferromagnetic
transition has to be based on the time-dependent SchroÈ dinger equation and to allow for
the fact that only the long-range order is destroyed as one approaches the Curie tem-
perature. (This applies similarly to antiferromagnetic order.) We deliberately omit treat-
ing this rather involved subject within the present article and confine ourselves to some
aspects of principal nature.

In a consistent non-relativistic theory of spin order there can only be two spin orien-
tations of each individual electron. The concept of antisymmetry of the associated
N-electron wavefunction rests crucially on the existence of a collective coordinate
x � �r; s� for each electron where r refers to its position in space and s � �1 to its spin
orientation. Clearly, the fact that the magnetization in a macroscopic single domain is
clamped to a particular symmetry direction of the crystal (the ªweak axisº), has its
cause in spin±orbit coupling, that is, in a relativistic effect not explicitly considered
within the framework of the present paper. We only take note of this effect of magnetic
anisotropy as qualitatively explaining the occurrence of well defined directions of the
magnetization.

In addition, the occurrence of domain walls of finite thickness is also connected to
magnetic anisotropy, that is, to spin±orbit coupling. The thickness of the wall within
which the direction of the spin turns by 90� or 180� as one moves perpendicular to the
wall, is proportional to the square root of the excess exchange energy per atom divided
by the spin±orbit coupling energy per atom [16]. In the elemental ferromagnets of tran-
sitions metals the thickness is about two orders of magnitude larger than the intera-
tomic distances. In compounds, however, where the lattice cell contains 3d-atoms and
heavy atoms with large spin±orbit coupling but only small excess exchange energy, the
latter atoms may cause a spin rotation already within the atomic volume whereas the
spins remain practically collinear within the 3d-atoms. Hence, in these cases the result-
ing magnetic moments in different 3d-atoms of the cell may be canted with respect to
each other and form a non-collinear array. A well studied example is Mn3Sn where
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one, in fact, observes non-collinear spin order [17, 18]. Non-collinearity may also occur
in an elemental metal like a-Mn which orders, in principle, antiferromagnetically, but
the lattice cell contains as many as 58 atoms some of which possess very small excess
exchange energies [19, 20]. In these atoms the ratio of excess exchange energy versus
spin±orbit coupling energy may be small enough to effect a canting of the spin direc-
tions between neighboring atoms with large magnetic moments. This non-collinearity
has been observed experimentally [21] and presents the subject of a recent theoretical
study by Mohn et al. [22].

It is generally agreed that the thermodynamic properties of 3d spin-ordered systems
are not decisively affected by spin±orbit coupling. For this reason we shall confine our-
selves to a purely non-relativistic description of these systems which means that our
treatment only applies to a spin-ordered system within single domains. Furthermore,
dipolar interaction, that is the interaction of the electrons with their own magnetic field,
is neglected. We thus exclude the occurrence of Damon-Eshbach-type spin waves. The
N-electron theory that we shall be using as a starting point, can be cast into the famil-
iar Kohn-Sham form of density functional theory [11] which has recently been general-
ized [9] such that excitations can be treated within the same framework. This applies to
thermal excitations as well. From a fundamental point of view given by our rigorous
reference to N-electron theory it is clear that any N-electron eigenstate into which the
system can be promoted by thermal excitations, is described by a wavefunction of the
same electronic coordinates as the ground state. That means that the values of the spin
coordinate s � �1 refer to the same orientations as before. Consequently, if one inte-
grates the square modulus of any of the excited wavefunctions down to spin-resolved
one-particle densities and takes the difference to form the magnetization, one obtains
in general a reduction of its magnitude compared to the ground state, but at all points
the axis of spin alignment is the same as before. Hence, within a consistent non-relati-
vistic theory of spin-ordered systems there can only be collinear magnetism irrespective
of whether the system is in its ground state or at a non-zero temperature. This remains
true when one allows for spatial spin-fluctuations: they cannot destroy the collinearity
of the spin order. Hubbard's and Hasegawa's disordered local moment picture [23, 24],
advocated by Staunton et al. [25], can hence not be reconciled with fundamental conse-
quences of a non-relativistic N-electron theory because it implies a spatially varying
spin direction. The same applies to the work of Lonzarich and Taillefer [26] who also
treat thermal excitations in terms of longitudinal and transverse spin fluctuations thus
implying the existence of a spatially varying spin orientation. A consistent approach
would have some akinship to the fluctuating local band theory advanced by Korenman
et al. [27], Capellmann [28] and Prange and Korenman [29].

We want to emphasize that parts of the present paper are related to earlier studies
by Gunnarsson [15, 30], Andersen et al. [31] and by Janak [32]. The account given by
Gunnarsson is marred by some insufficiencies in the calculation of the Stoner param-
eter by using wavefunctions and potentials that are not consistent with each other. Ja-
nak's contribution does not comprise h.c.p.-structures but presents otherwise a consider-
ably more complete study based on self-consistent KKR-band structure calculations
which yield also values for the quantities relevant to the Stoner criterion. Although the
results are obtained by our more advanced calculations that include relativistic effects
in the core region and are based on self-consistent potentials without shape approxima-
tion, one finds all in all only minor differences compared to Janak's results. This re-
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mains true when using the improved exchange±correlation potential suggested by Per-
dew and Wang [33] in place of a slightly modified v. Barth-Hedin form [34] applied by
Janak (MJW exchange±correlation potential). However, both Gunnarsson and Janak,
omit to clarify that their spin-density functional (SDF-) calculations consistently derives
from an N-electron wavefunction treatment. A substantial SDF-based study on the in-
terrelation between ferro- and antiferromagnetic order and the structure and the size of
the unit cell in 3d- and 4d-metals is due to Moruzzi et al. [35 to 39]. A characteristic
feature of these calculations is the use of the so-called fixed moment method. Magnetic
key quantities of some 3d/4d-metals are also the subject of calculations by Sandratskii
and KuÈ bler [40].

We have recalculated the magnetic properties of these metals and extended the calcula-
tions to some rare earth metals to elucidate the apparently crucial effect of electron corre-
lation on ferromagnetic order by allowing for different local and gradient-corrected ex-
change±correlation potentials. The Stoner criterion is shown to play a central part in that
context. We want to emphasize, however, that the susceptibility of the Stoner parameter
to the inclusion of electron correlation might well be an artifact of the local approxima-
tion to the exchange±correlation potentials that are generally used with only few excep-
tions. It is entirely conceivable that non-local exchange-potentials (see e.g. Rubio et al.
[41], Cordes and Fritsche [42], Fritsche and Gu [43]) behave in a similar way to correla-
tion-corrected local potentials. This will be discussed briefly in Section 9.

Some of the arguments we shall be using in discussing the simplest conceivable ap-
proximation to the exchange±correlation energy are not entirely new and have already
been the subject of earlier studies on density functional theory (see e.g. Harris [44]).

As regards the pioneering contributions of Slater and his school to the problem of
band magnetism within the Xa-approximation and related studies we refer the reader
to one of the review articles concerning the Xa-method (Slater [45]). However, neither
these papers nor later articles that are expressively based on density functional theory
adopt the radical standpoint of the present paper that this concept of band magnetism
represents the only consistent framework of a first-principles theory though its concrete
form is inevitably marred by approximations.

3. Energy Gain in an N-Electron System by Setting Up Spin Order

The striking feature of ferromagnetism is that it lacks any classical analogy. Within a
non-relativistic treatment which will be the sole objective of the present paper, the
orbital contributions to the total magnetic moment per atom are completely quenched.
Only these moments would be comparable to classical moments that are associated
with the orbital motion of charged particles. Hence, the spontaneous magnetic moment
of ferromagnets has its origin in the non-classical phenomenon of ordered spin mo-
ments. On the other hand, the non-relativistic N-electron Hamiltonian does not contain
any spin-dependent portions. Spin order is therefore a pure consequence of the anti-
symmetry of the N-electron wavefunction. To bring this out as clearly as possible, we
shall first point out how this antisymmetry leads to the phenomenon of a Fermi hole
for either spin direction and why the width of these two holes is not identical in spin-
ordered systems. The difference in width gives rise to exchange±correlation potentials
of different depths in the one-particle equations we shall obtain for the states of the
two different spin directions.
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We begin by considering the N-electron ground state associated with the wavefunction

Y0�x1; x2; . . . ; xN� ; �3:1�
where xn stands, collectively, for the spatial coordinate rn and the spin coordinate
sn � �1 of the n-th electron. This wavefunction solves

HY0�x1; x2; . . . ; xN� � E0Y0�x1; x2; . . . ; xN� ; �3:2�
where E0 is the electronic ground state energy and H denotes the Hamiltonian which
in atomic (Hartree) units reads

H �PN
i�1
ÿ 1

2
r2

i � Vext�ri�
� �

� 1
2

P
i; j
�i 6�j�

1
jri ÿ rjj : �3:3�

Equations (3.2) and (3.3) imply that we are working within the Born-Oppenheimer
approximation, more precisely: we assume the atomic nuclei to be fixed in their equilib-
rium positions. The sum of their Coulomb potentials is denoted by Vext�r�.

As a consequence of antisymmetry we have

Y�x1; . . . ; xn; . . . ; xm; . . . ; xN� � 0 for any xn � xm : �3:4�
On introducing the so-called pair density by

r2�x0; x� � N�N ÿ 1� � jY�x1; . . . ; xnÿ1; x0; xn�1; . . . ; xmÿ1; x; xm�1 . . . ; xN�j2

�d4x1 . . . d4xnÿ1d4xn�1 . . . d4xmÿ1d4xm�1 . . . d4xN ; �3:5�
where �

. . . d4x �P
s

�
. . . d3r

equation (3.4) leads to

r2�x0; x� � 0 for any x0 � x : �3:6�
Unless stated otherwise, the real-space integrals are generally taken over the fundamental
volume, i.e. the volume V of the crystal under study. To make the meaning of equation
(3.6) more transparent, we shall here and in the following use the alternative notation

r2�x0; x� � r�s
0; s�

2 �r0; r�
wherever it appears convenient. Hence, equation (3.6) states

r�""�2 �r; r� � 0 and r�##�2 �r; r� � 0 for any r ; �3:7�
which holds irrespective of the strength of the electron±electron interaction. By con-
trast, we have

r�"#�2 �r; r� 6� 0 for any r �3:8�
and in particular

r�"#�2 �r; r� � r"�r� r#�r� ;
where the equality sign refers to zero interaction.

First-Principles Theory of Ferromagnetic and Antiferromagnetic Order 293



Because of the property (3.7) and since r�s; s�2 �r0; r� is positive for r0 6� r the resulting
characteristic spatial dependence is referred to as ªFermi holeº [46].

We have already allowed for the case of spin-order where the Fermi holes for the
two spin orientations are different as will be shown further in this section.

The spin-resolved one-particle density is defined as

rs�r� � N
� jY�x; x2; . . . ; xN�j2 d4x2 . . . d4xN ; �3:9�

which gives rise to a magnetization

m�r� � mB�r"�r� ÿ r#�r�� e ;
where mB denotes the Bohr magneton and e represents a unit vector in the direction of
the quantization axis.

It is immediately clear from this equation that m�r� must be collinear with respect to
this axis everywhere in space.

As follows from equation (3.5), the one- and two-particle densities are intercon-
nected, �

r�s
0; s�

2 �r0; r� d3r0 � �Ns0 ÿ ds0s� rs�r� ; �3:10�
where P

s0
Ns0 � N : �3:11�

It will prove convenient to introduce so-called correlation factors fs0s�r0; r� by setting

r�s
0; s�

2 �r0 r� � rs0 �r0� rs�r� � r̂�s
0; s�

2 �r0; r� ; �3:12�
where

r̂�s
0; s��r0; r� � ÿrs0 �r0� rs�r� fs0s�r0; r� : �3:13�

These correlation factors were first suggested by McWeeny [47], however, with a differ-
ent sign, and are connected to the more familiar electronic pair correlation functions
gs0s�r0; r� by

fs0s�r0; r� � gs0s�r0; r� � 1 : �3:14�
On inserting equations (3.12), (3.13) into equation (3.10) we arrive at the so-called sum
rule �

rs0 �r0� fs0s�r0; r� d3r0 � ds0s for any r : �3:15�

This equation will be of fundamental importance for the understanding of why spin
order occurs at all.

As a consequence of the spatial variation of the pair density, the dependence on
r0 ÿ r of the associated correlation factors has the form shown in Fig. 1.

Fig. 1b is only meant to give an idea of the generic dependence which conforms to
equation (3.8) and to the pertinent sum rule (3.15) where the right-hand side is zero.
The cusp displayed at r0 � r is caused by the particular 1=jr0 ÿ rj dependence of the
electron±electron interaction (see e.g. Kato [48]). In spin-ordered systems the two cusp
heights are different as has been indicated in Fig. 1b. The �r0; r� dependence is strongly
simplified. Since rs0 �r0� fs0s�r0; r� integrates to zero for s0 6� s, and since fs0s�r0; r� is posi-
tive around r0 � r as a consequence of the Coulomb repulsion, it must be negative out-
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side this region at least once to ensure that the sum rule is satisfied. Since gs0s�r0 r� � 0,
we have according to equation (3.14)

fss�r0; r� � 1 ;

where the equality sign refers to r0 � r.
In a ferromagnetic system within the relevant region of space where the densities are

large we have

r"�r� > r#�r� :
Because the sum rule (3.15) requires these densities, weigthed by the pertinent correla-
tion factor, to integrate to unity for either spin direction, the width of the bell-shaped
�r0; r� dependence of fss�r0; r� is different for the spin-up and the spin-down subsystems.

This explains a posteriori why the Fermi holes for s � �1 are different in that case.
The total electron±electron interaction can be cast as

hVeÿei � 1
2

P
s0; s

� �
r�s
0; s�

2 �r0; r�
jr0 ÿ rj d3r0 d3r :

On replacing the pair density with the aid of equations (3.12), (3.13) we can rewrite
this expression as

hVeÿei � 1
2

� �
r�r0� r�r�
jr0 ÿ rj d3r0 d3r � Exc�r̂�s

0; s�
2 �r0; r�� ; �3:16�

where

r�r� �P
s

rs�r� �3:17�
and

Exc �
P

s

�
rs�r� Exc�r; s� d3r �3:18�

with Exc�r; s� denoting the so-called exchange±correlation energy per particle, defined by

Exc�r; s� � ÿ 1
2

P
s0

�
rs0 �r0� fs0s�r0; r�
jr0 ÿ rj d3r0 : �3:19�
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We want to emphasize that the particular form of these two expressions is an immedi-
ate consequence of consistently staying within an N-electron wavefunction description.
Curiously, the expression given by v. Barth and Hedin [34] in their paper on ferromag-
netically ordered systems differs from the above equation (3.18) in that only the ex-
change±correlation energy per particle occurs as explicitly spin-dependent, but is incon-
sistently multiplied by the total charge density rather than by the spin-resolved density.

To simplify the following considerations we provisionally assume

f"#�r0; r� � f#"�r0; r� � 0 ; �3:20�
which implies some loss in the quantitative predictive power of the theory, but appears to
be an acceptable approximation because the actual magnitude of these functions in the
range of interest is relatively small compared to where the correlation factors for parallel
spins are close to or of the order of unity. We have tried to make this qualitatively evident
in Figs. 1a and b. It should be noted, however, that the assumption (3.20) does not imply a
neglect of correlation altogether. Any shape of the correlation factors for parallel spins
that is wavefunction-representable and minimizes the total energy with that approximate
form of Exc, will be different from the analogous correlation factors in Hartree-Fock theo-
ry, and hence the differences in the respective values of Exc already represent portions of
the correlation energy that may be referred to as ªresidual Pauli correlationº.

The shape of fss�r0; r�, as qualitatively depicted in Fig. 1a, suggests an approximation
of this function by a Gaussian or some similar curve that would display the same key
features and conform to the sum rule. (For a study of the various choices that can be
made without seriously affecting the outcome of the theory, see Cordes and Fritsche
[42].) For simplicity we decide in favor of the Gaussian form. We can further consider-
ably simplify the considerations by assuming that the charge density varies to a good
approximation linearly across the Fermi hole, that is within the range where fss�r0; r� is
sizably different from zero. The result can be written [9] as

Exc � ÿ 9
16

a
3
p

� �1=3 P
s

�
�2rs�r��4=3 d3r ; �3:21�

where a depends somewhat on the particular form one has chosen for fss�r0; r� and in
the present case attains the value

a � 0:716 : �3:22�
The ªclassicalº value of 2/3 is obtained for another ªclassicalº form of fss�r0; r�. (For
details, see e.g. Fritsche [9, 49].) With that particular value for a, expression (3.21) was
first derived by Dirac [50] and later repeatedly recovered by GaÂspaÂr [51], Kohn and
Sham [11] and others. All these derivations have in common that they assume the elec-
tronic system under study to be homogeneous which is completely unjustified for elec-
trons moving in the potential of nuclear point charges. Slater, in a paper published in
1951, obtained a value a � 1 in trying to approximate the non-local expression for ex-
change in the Hartree-Fock equations by a local one [52]. In collaboration with Wood
[53] and Schwarz [54] he later advanced the so-called Xa-method which consists in an
optimization of the value of a with reference to the Hartree-Fock method. (For a sur-
vey on this subject see also Slater [45].)

In contrast to the view typically adopted in density functional theory, our derivation
of expression (3.21) does not draw on the homogeneity (or weak inhomogeneity) of the
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system. Therefore, it is to a large extent also justified for strongly inhomogeneous
ªelectron gasesº as long as their charge density varies sufficiently well linearly across
the Fermi hole whose diameter is given by

2rs�r� � 2���
p
p �rs�r��ÿ1=3 : �3:23�

Hence, the diameter is small where the density is large so that the admissible steepness
of variation may correspondingly be larger in these regions compared to the periphery
of atoms where the density is small, and hence the gradient of its change must be small.
These aspects of the validity of (3.21) are also clearly spelled out in the paper by Har-
ris [44].

Although the ensuing considerations will be based on the simple expression (3.21), it
should be borne in mind that one could just as well use the exact expressions (3.18),
(3.19) for Exc without changing the generality of the conclusions we shall be arriving at.
Expression (3.21) already describes to a rather good degree of accuracy the depend-
ence of Exc on the spin-resolved densities rs�r� with the most important property being
that this dependence is non-linear. In the following we shall use the iso-atomic para-
magnetic systems with identical spin-up and down densities as a reference for the analo-
gous spin-ordered systems under study. If we assume ±± as suggested by the situation
in 3d-ferro- or antiferromagnetic materials ±± that

rordered�r� � rpara�r� �3:24�
holds to a good degree of accuracy, the spin-resolved densities rs�r� in the spin-ordered
system may be written

r"�#��r� � r
para
"�#��r� � Dr"�#��r� ; �3:25�

where

r
para
" �r� � r

para
# �r�

and

Dr"�r� � ÿDr#�r� : �3:26�
If we insert r"�#��r� as given by equation (3.25) into expression (3.21) the integrand
may be written as

�r"�#��r��4=3 � �rpara
"�#��r��4=3 1� Dr"�#��r�

r
para
"�#��r�

( )4=3

: �3:27�

Because of

1� Dr

r

� �4=3

� 1� 4
3

Dr

r
� 2

9
Dr

r

� �2

which holds up to second order in Dr=r, the change in DExc can be cast as

DExc � ÿ 9
8

a
3
p

� �1=3 P
s

4
3

�
�2rpara

s �r��1=3 Drs�r� d3r � 4
9

� �Drs�r��2
�2r

para
s �r��2=3

d3r

24 35 :
�3:28�
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The most important message of this
equation is that one gains generally
exchange±correlation energy on in-
troducting an asymmetry in the
spin-resolved densities. This can
also directly be seen from equation
(3.21) as illustrated in Fig. 2 where
we have plotted Exc as a function
of g which is defined through

r"�#��r� � gr
para
"�#��r� :

The balance of gain versus loss is
obviously quite minute, but it is this

net gain in Exc that drives a system into ferromagnetic or antiferromagnetic order. The
resulting magnetic moment per atomic unit cell is given by

M � mB

�
W

�Dr"�r� ÿ Dr#�r�� d3r ; �3:29�

where W stands for the volume of that cell and mB denotes the Bohr magneton. When
equation (3.26) holds, the term proportional to Drs�r� in equation (3.28) drops out.

The total energy of the system may be written as

E � Teÿe �
�

r�r� Vext�r� � 1
2

� �
r�r0� r�r�
jr0 ÿ rj d3r0 d3r � Exc ; �3:30�

where Teÿe is the kinetic energy of the interacting N-electron system.
If we employ the approximations (3.24) to (3.26), the difference DE between the

spin-ordered and paramagnetic case yields

DE � DTeÿe � DExc ; �3:31�
where

DTeÿe � Tordered
eÿe ÿ Tpara

eÿe :

Since DExc drops monotonically as Dr" becomes larger, this energy gain can only be
counter-balanced by an increase of the kinetic energy DTeÿe so that

DTeÿe � DExc � ÿjDEjmax �3:32�
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Fig. 2. Exc as a function of g � 1� D,
where 0 < D� 1. The gain and loss, re-
spectively, connected to �D are indi-
cated by arrows and refer to some spe-
cific value of D (i.e. D � 0:2) chosen as
an example



defines the minimum of the free energy (at zero temperature) for the spin-ordered
system.

In concluding this section we want to emphasize that the popular notion of spin fluc-
tuations that are believed to occur also in the electronic ground state cannot be recon-
ciled with the existence of a wavefunction as defined by equation (3.1). If we choose
the spin coordinates of that wavefunctions as indicated in obvious notation

Y�r1"; . . . rn"; rn�1#; . . . rN#� ;
the resulting spin and magnetic moments, respectively, are given by

S � �h

2
�N" ÿN#�; M � mB�N" ÿN#� ;

where

n � N"; N ÿ n � N#

and h � 2p�h denotes Planck's constant.
As the electrons are indistinguishable, the total energy associated with that wavefunc-

tion does not change on replacing the subset fsng of spin coordinates for sn � �1 by
any other subset of coordinates of the same value and having the same number of
elements, i.e. N". On the other hand, there can be no other ground state wavefunction
giving the same one-particle density as before but being associated with a larger (or
smaller) number N". This is made clear by the following consideration. The above wa-
vefunction vanishes for any rn" � rm", where n 6� m and n � n; m � n, likewise for
rn# � rm#, where n 6� m and n > n; m > n. Hence, the wavefunction displays a set of

N"
2

� �
� N#

2

� �
nodes in the 3N-dimensional coordinate space. Another wavefunction

with only one more spin up, e.g. for the (n� 1)st electron, has N" ÿN# ÿ 1 more
nodes. Consequently, the kinetic energy and the pair density is different in that case. As
a result, the total energy differs from that of the first wavefunction and therefore only
one of the two wavefunctions can represent the ground state. We thus arrive at the
conclusion that the total moment of a spin-ordered system in its ground state must be
an integer multiple of �h=2, which means that there can be no spin fluctuations. The
same applies to any other eigenstate.

If one allows for a virtual excitation into a state Y1 of different total spin moment,
the wavefunction can now only be a solution to the time-dependent N-electron SchroÈ -
dinger equation of the system and would have the form

Y�t� � c0Ŷ0 eiw0t � c1Ŷ1 eÿiw1t ;

where

jc0j2 � jc1j2 � 1 :

The non-time dependent portion of the wavefunction has been characterized by a hat.
The virtual character of the excitation implies

jc1j < jc0j :
Since Ŷ1 is associated with an energy E1 � �hw1 higher than E0, the magnetization con-
nected to Y�t� is time-dependent,

m�r; t� � mB�r"�r; t� ÿ r#�r; t�� ;
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where

r"�#��r; t� � r�0; 1�"�#� �r� � ~r"�#��r� cos ��w1 ÿ w0� t � j�r�� :
The amplitude ~r"�#��r� arises from the cross-terms obtained on forming Y*Y. Hence, a
virtual excitation leads to a time-dependent magnetization that couples to the radiation
field and causes the state Y�t� to decay back to Y0 whose total moment is non-fluctuating.

4. Reducing the Problem of Spin-Ordered N-Electron Systems
to a One-Particle Problem

The salient point of density functional (DF-)theory consists in mapping expression
(3.30) for the total energy onto the alternative form

E � T0 �
�

r�r� Vext�r� d3r � 1
2

� �
r�r0� r�r�
jr0 ÿ rj d3r0 d3r � �Exc ; �4:1�

where T0 is the kinetic energy of a non-interacting N-electron system having the same
spin-resolved densities rs�r� as the original system but moving in a modified potential
Vext�r� � V̂ext�r; s�. The above expression for E results from a thought-experiment
where one adiabatically reduces the strength of the electron±electron interaction to
zero and simultaneously turns on a balancing external potential that ensures the conser-
vation of rs�r� at any coupling strength. In the sum rule (3.15), which ultimately defines
our detailed form of Exc, only fs0s�r0; r� is affected by this adiabatic process which leads
to a coupling strength averaging of the correlation factors. Thus, the quantity �Exc in
(4.1) is defined through equations (3.18) and (3.19) where the correlation factors are
replaced by their averages over the coupling strength. It turns out that the pertinent
new exchange±correlation energy remains unchanged in its original form within the
approximation (3.21). This is a consequence of the fact that the sum rule (3.15) retains
its form on averaging over the coupling strength, for details, see e.g. [9, 55]. As a result
of this, we have

Teÿe � T0 �4:2�
within the approximation made for Exc. Since the N-electron substitute system is non-
interacting, its wavefunction obeys a SchroÈ dinger equation that can be separated into N
one-particle equations [10]

ÿ 1
2 r2 � Veff�r; s�� �

wis�r� � Eiswis�r� ; �4:3�
where

Veff�r; s� � Vext�r� � V̂ext�r; s� �4:4�
denotes an effective one-particle potential and V̂ext�r; s� can be shown to have the form

V̂ext�r; s� � VH�r� � Vxc�r; s� �4:5�
with VH�r� denoting the Hartree potential

VH�r� �
�

r�r0�
jr0 ÿ rj d3r0 �4:6�
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and

Vxc�r; s� � ÿ 3
2

a
3
p

� �1=3

�2rs�r��1=3 : �4:7�

The latter results from expression (3.21) if we employ the interrelation between DExc

and Drs that implicitly defines Vxc�r; s� viz.

DExc �
P

s

�
Vxc�r; s� Drs�r� d3r : �4:8�

Equation (4.3) represents the well-known Kohn-Sham (KS-) equations. As only the
total charge density must be invariant under all lattice translations and since

r�r� �P
s

rs�r� ;

it appears that the spin-resolved densities rs�r� must not necessarily have that property.
On the other hand, the total energy per lattice cell must also be translationally invar-

iant. As one departs from paramagnetic order the gain in exchange energy per lattice
cell depends only on the absolute value of the associated magnetic moment. Transla-
tional symmetry is hence only reconcilable with an array of magnetic moments that are
either identical or differ in sign. The latter case requires a regular array of up- and
down-orientations since the kinetic enery per cell must be translationally invariant as
well. One is dealing then with two identical sublattices each associated with the respec-
tive set of parallel moments.

Since rs�r� possesses the translational symmetry of the associated lattice or sublattice,
the effective potential in the KS-equations is periodic. (This statement also remains valid
for the exact expression for Vxc�r; s�, of course.) Consequently, the solutions wis�r� in a
perfectly ordered solid have Bloch form, that is, they are necessarily itinerant. There
can be no localized states irrespective of the strength of the correlation.

The wavefunction of the substitute system represents a N �N Slater determinant
that contains the Ns lowest lying solutions to equation (4.3). Hence T0 and rs�r� are
given by

T0 �
P

s

P�Ns�

i

�
w*is�r� �ÿ 1

2 r2� wis�r� d3r �4:9�

and

rs�r� �
P�Ns�

i
jwis�r�j2 ; �4:10�

where

N �P
s

Ns : �4:11�

If one wishes to go beyond the present approach characterized by our assumption
(3.20) on the correlation factors, it is desirable to find a similarly simple analytical form
for these factors as for the parallel spin case. The principle form of these factors is
shown in Fig. 1b. A relatively successful approximation that retains the simplicity of our
Xa-derivation has been given by Eckardt and Fritsche [56] and the resulting potential
may be referred to as XCa-potential with X referring to ªexchangeº and C to ªcorre-
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lationº. The results for the spin-up subsystem may be cast as

V"xc�r� � ÿ
3
2

3
p

� �1=3

�r�r��1=3 ax�2x"�1=3 � 3
4

ac��2x#�1=3 � 1
2
�x#=x"� �2x"�1=3�

� �
;

�4:12�
where

ax � 0:716

0 < ac < 0:154

and

x"�#� � r"�#��r�=r�r� :
The arrows in the analogous expression for the spin-down subsystem are reverse. The
first term in the curly brackets, together with the factor in front, is identical with the
previous Xa-expression (4.7), the second term derives from the correlation factors for
antiparallel spin. Again, the derivation does not require the electronic system to be
homogeneous. Using the above expression for Vxc�r; s� and setting ac � 0:09, we have
performed additional calculations on some of the materials that are the subject of Sec-
tion 12. The results are in very good agreement with those discussed in Section 12
which are based on the so-called Perdew-Wang (PW-) form of Vxc�r; s�. The derivation
of the latter is, however, entirely different from that of our expression.

5. Method of Systematically Improving the Approximation
to the Exchange±Correlation Energy

To keep the arguments as simple as possible, we shall in the following sections stay
within certain approximations that are commonly used in DF-theory. However, because
of the general scope of this paper we want briefly to address the problem of how the
present framework of DF-theory can, in principle, be extended in a systematic way so
that one would eliminate some vexing shortcomings, but retain the line of thought fol-
lowed in the ensuing sections.

Mapping the interacting N-electron system onto a non-interacting substitute system
amounts to uniquely mapping the true wavefunction Y onto a Slater determinant F
formed from the N lowest lying KS-states wis�r�. Hence Y may be decomposed

Y � F� ~Y ; �5:1�
where, by construction, Y and F yield identical spin-resolved densities. The pair-density
contribution associated with the occurrence of ~Y

~r�s
0; s�

2 �r0; r� � N�N ÿ 1� � �F* ~Y � ~Y*F� ~Y* ~Y � d4x3 . . . d4xN �5:2�

yields the ªresidual Pauli correlationº mentioned earlier which consists of a fine-tuning
around the exchange hole for s0 � s so that the Fermi hole attains its final form.
Furthermore, for s0 6� s it gives rise to the Coulomb hole. The fraction of the total pair
density thus defined must have the propertyP

s0

�
~r�s
0; s�

2 �r0; r� d3r0 � �N ÿ 1� ~rs�r� � 0 : �5:3�
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The function ~Y may be given the form

~Y � F�x1; x2; . . . xN� F�r1; r2; . . . rN� ; �5:4�
where F�r1; r2; . . . rN� must be symmetric with respect to the exchange of pairs of real-
space coordinates. Since ~r�s

0; s�
2 �r0; r� describes relatively weak structures that occur

around the Fermi hole and the Coulomb hole away from the atomic centers, it is advis-
able to expand F�r1; r2; . . . rN� in terms of plane waves which present the unbiased set
of choice. Hence we give this function the form

F�r1; r2; . . . rN� �
P
n

cn eiK̂n r̂ ; �5:5�

where r̂ denotes a 3N-dimensional vector

r̂ � �r1; r2; . . . rN� ;
and K̂n is similarly defined by appropriately selecting subsets of N vectors Ki � kj

where Ki is a vector of the associated reciprocal lattice and kj runs through the set of
points that belong to the pertinent first Brillouin zone. These subsets are labeled by an
index n that numbers them according to some plausible order. To ensure the required
symmetry of expression (5.4), coefficients cn associated with vectors K̂n, that are inter-
related by a permutation of their components Ki � kj, must be equal. Using definition
(5.2) we may cast the total correlated pair density, introduced by equation (3.12), in the
form

r̂�s
0; s�

2 �r0; r� � ds0sr̂
�s; s�
2xo �r0; r� � ~r�s

0; s�
2 �r0; r� ; �5:6�

where the first term on the right-hand side refers to the ªexchange-onlyº contribution
connected to F. Accordingly, the exact exchange±correlation energy as implicitly de-
fined through equation (3.16) may be decomposed

Exc � Exo � Ec : �5:7�
We now envision F to be built from orbitals that are self-consistent solutions to the
KS-equations (4.3) where one has used some approximate form of Vxc�r; s�. If we then
form ~r�s

0; s�
2 �r0; r� according to equation (5.2), using equation (5.4) and expansion (5.5),

Ec attains the principal form

Ec �
P
n
�cnVn � c:c:� � P

n0;n
c*n0cnMn0n ; �5:8�

where Vn and Mn0n contain Poisson-type integrals that involve KS-orbitals and plane
waves. By using the decomposition (5.1) and expansion (5.5) the total energy (3.30) can
be expressed in complete analogy to Ec. Clearly, E must attain a minimum if one drives
~Y into its exact form. Thus, the coefficients cn can be determined by minimizing the

pertinent expression for E, which yields a set of linear inhomogeneous equations. The
subsidiary condition for conserving the norm of Y may be cast asP

s

�
~rs�r� d3r � 0

which, in obvious notation, amounts to requiringP
n
�cnNn � c:c:� � P

n0;n
c*n0cnPn0n � 0 ;
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where the expression on the left is completely analogous to Ec in equation (5.8). The
minimization must hence be performed adding this expression (with a Lagrangean mul-
tiplier m placed in front) to E which yields

DE � ÿP
n0; n

c*n0 �m� cn�m� �T̂n0n �Mn0n ÿ mPn0n� ;

where T̂n0n refers to the contribution of the correlated kinetic energy. The value of m is
determined by searching for the zero of the above norm-conserving expression and
DE�m� then describes the gain in energy by going beyond the ªexchange-onlyº approx-
imation.

At this stage, the KS-orbitals do not yet have their exact form. Since the various
contributions to E all contain these orbitals explicitly so that E is a functional of them,
one can find an improved form of these orbitals by going through a second minimiza-
tion which consists in adding a correcting potential dVxc�r; s� to the previously used
approximate exchange±correlation potential in the KS-equations. The exact Vxc�r; s� is
found when E�dVxc�r; s�� has attained its minimum. This idea of determining an ªopti-
mized effective potentialº (OEP) goes back to Sharp and Horton [57] and Talman and
Shadwick [58] and has been used with impressive success by various authors, most re-
cently by Engel and Vosko [59], by Grabo and Gross [60] and by Fritsche and Jianmin
Yuan [61]. It should be emphasized, however, that none of these authors have so far
used a form of Ec that we are advocating, but they rather use an electron gas derived
approximation [62]. Clearly, the method we are suggesting, would require the coeffi-
cients cn and the KS-orbitals to be iteratively optimized by repeatedly running through
the two-step minimization.

Just as the correlated pair density may be subdivided as described by equation (5.6)
the spin-resolved density may be decomposed

rs�r� � rs0�r� � ~rs�r� ;
where ~rs�r� is defined in analogy to ~r�s

0; s�
2 �r0; r� and rs0�r� derives from an analogous

integral over F*F only. Since F is a determinant that contains Ns orbitals for s � �1,
rs0�r� integrates to the same number of electrons as rs�r� itself, i.e. to Ns. Hence, ~rs�r�
has the property�

W

~rs�r� d3r � 0 : �5:9�

We have already confined the integral to the unit cell of volume W which is admissible
if one is dealing with a periodic structure.

If the KS-orbitals in F are generated for the exact KS-potential Veff�r; s�, ~rs�r�
vanishes identically. This is just the defining property of the exact KS-potential. In prac-
tice this potential is unknown, however, and one has to resort to approximations.
Hence, ~rs�r� represents a non-vanshing excess density that occurs inevitably but cannot
be obtained within a conventional DF-calculation. If the lattice contains only one atom
per unit cell, ~rs�r� cannot contribute to the magnetic moment because it integrates to
zero (equation (5.9)). In an antiferromagnetic material W contains at least two non-
equivalent but chemically identical atoms A and B. Equation (5.9) still holds, but ~rs�r�
can integrate to a sizable value within the subcell WA around A if it integrates to ex-
actly the negative of that value within subcell WB around B. (Of course, the subcells
have equal shapes and sizes and the property WA �WB � W.) If the non-vanishing ex-
cess charge densities for s � �1 are equal except for their sign, their sum is zero within
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each subcell so that the Hartree potential would agree with that obtained from the KS-
calculations. But since the latter yields spin-resolved densities that may considerably be
in error, the exchange portion can steer the calculations into a qualitatively wrong re-
sult, e.g. zero magnetic moment per atom in a case where the inclusion of ~rs�r� would
yield finite moments. Undoped high-Tc superconductors that are manifestly antiferro-
magnetic may well represent examples of this kind.

In concluding this section we want to point out that the idea of our approach is
akin to the method of including correlation by placing a so-called ªJastrow-factorº
[63] in front of a Slater determinant that is built from Hartree-Fock orbitals. This
method is used, for example, in quantum Monte-Carlo calculations on atoms with a
sufficiently small number of electrons. Our decomposition (5.1) can correspondingly
be recast as

Y � �1� F�F
if we combine equations (5.1) and (5.4).

6. Transition from the Paramagnetic to the Spin-Ordered Case:
Energy Balance

If we eliminate T0 in the form (4.9) from equation (4.1) and use the KS-equations, E
can alternatively be cast as

E �P�N�
i; s
Eis ÿ 1

2

� �
r�r0� r�r�
jr0 ÿ rj d3r0 d3r ÿP

s

�
rs�r� Vxc�r; s� d3r � �Exc ; �6:1�

which, incidentally, holds also in the scalar-relativistic case. We consider the change of
E that occurs on transferring the system from a paramagnetic to a spin-ordered state

DE � Eordered ÿ Epara : �6:2�
The quantities that undergo changes in this transition are the spin-resolved densities
and the one-particle energies Eis. In general, the total charge density will change as well,
though the magnitude of this change may be expected to be considerably smaller than
that of its spin-resolved components having different signs. In terms of these changes
Drs�r� and Dr�r� the total energy change DE can be expressed as

DE � DE� Presp:

i; s
DEis ÿ

P
s

�
rpara

s �r� DVxc�r; s� d3r ÿ
�

rpara�r� DVH�r� d3r

" #

ÿP
s

�
Drs�r� Vpara

xc �r; s� d3r ÿP
s

�
Drs�r� DVxc�r; s� d3r

ÿ 1
2

� �
Dr�r0� Dr�r�
jr0 ÿ rj d3r0 d3r � DExc ; �6:3�

where Presp:

i; s
DEis �6:4�
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sums up the changes in the one-particle energies referrring to states well below the Fermi
level that remain occupied, but are affected by changing the occupation of the other states
around the Fermi level. These energy shifts result from two effects: changing the occupa-
tion of the other states leads to a primary ªundressedº Dr0

s �r� causing Vpara
xc �r; s� to

change. The states that remain occupied respond to DV0
xc�r; s�, thereby building up screen-

ing charge so that the total change Drs�r� is a result of these two contributions,

Drs�r� � Dr0
s �r� � Drresp:

s �r� ;
which gives rise to a resultant change DVxc�r; s�. The shifts DEis are just the expectation
values of the latter and the corresponding change DVH�r� of the Hartree potential.

The quantitiy DE stands summarily for

DE � P�DN�

i
Eferro

i" ÿ P�DN�

i
Epara

i# �6:5�

and describes the effect of depleting DN spin-down states and simultaneously filling
DN spin-up states in performing the paramagnetic ! ferromagnetic transition. The
quantity DN relates to the magnetic moment M that results from the established asym-
metry in the spin-resolved occupation, i.e.

M � 2mB DN :

The changes DEis that occur under the sum in equation (6.4) can be expressed to first
perturbational order by

DEis �
� jwpara

is �r�j2 DVxc�r; s� d3r � � jwpara
is �r�j2 DVH�r� d3r : �6:6�

Taking the sum over all response states we may cast the result asPresp:

i; s
DEis ÿ

P
s

�
rpara

s �r� DVxc�r; s� d3r � � rpara�r� DVH�r� d3r
� �

� ÿ Pdepleted

i

� jwpara
i# j2 DVxc#�r� d3r � Pdepleted

i

� jwpara
i# j2 DVH�r� d3r

" #
: �6:7�

One recognizes that the left-hand side of this equation agrees with the bracketed term
in equation (6.3). The right-hand side of equation (6.7) refers to contributions of
ªparamagneticº states that are depleted in the process of establishing the ferromagnetic
asymmetry.

With the aid of equation (6.7) expression (6.3) for the total energy change may be
rewritten

DE � DEÿ Pdepleted

i

�
jwpara

i# j2 DVxc#�r� d3r ÿ Pdepleted

i

�
jwpara

i# j2 DVH�r� d3r

ÿP
s

�
Drs�r� Vpara

xc �r; s� d3r ÿP
s

�
Drs�r� DVxc�r; s� d3r

ÿ 1
2

� �
Dr�r0� Dr�r�
jr0 ÿ rj d3r0 d3r � DExc : �6:8�

This equation will prove to be instrumental in the discussion of spin order.
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7. Spin Order in Atoms: A Simple Case

As an illustrative example we now consider the simple case of an oxygen atom the
occupied one-particle levels of which are schematically shown in Figs. 3a and b, where
Fig. 3a refers to the paramagnetic case.

We consider the transfer of an electron according to E#2p ! E"2p. The charge densities
rs�r� change by Drs�r�. To a first approximation we assume

Dr"�r� � Dr#�r� � 0 �7:1�
so that

rpara�r� � rferro�r� �7:2�
in agreement with our assumption made in Section 3. Furthermore, for the changes of
Vxc�r; s� to first order in Drs�r� we have

DVxc"�r� � ÿDVxc#�r� ; �7:3�
which gives rise to the change DEis. As a consequence of the above approximation, the
third, fourth and sixth term on the right-hand side of equation (6.8) drop out. It is
advisable to subdivide Drs�r� into a contribution Dr0

s �r� that occurs as result of deplet-
ing and filling a state, respectively, i.e.

Dr0
"�#��r� � � jw2p#�r�j2 ; �7:4�

and into Drresp:
s �r� that relates to the response of the remaining occupied states to

DVxc�r; s� so that

Drs�r� � Dr0
s �r� � Drresp:

s �r� : �7:5�
Because of equation (7.4) we have�

Dr0
"�#��r� d3r � �1

whereas Drresp:
s �r� integrates to zero and represents only a dipolar charge distribution of

small magnitude. We are hence justified in approximating the fifth term on the right-
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hand side of equation (6.8) in the form

ÿP
s

�
Drs�r� DVxc�r; s� d3r � 2

� jw2p#�r�j2 DV0
xc#�r� d3r ; �7:6�

where we have used equation (7.3). Likewise, we have

DExc � DE0
xc : �7:7�

If we use the latter two results, equation (6.8) takes the simple form

DE � Eferro
2p" ÿ Epara

2p# �
� jw2p#�r�j2 DV0

xc#�r� d3r � DE0
xc : �7:8�

We now observe that

Eferro
2p" � Epara

2p" � DE2p" �7:9�
and

Epara
2p" � Epara

2p# :

The quantity DE2p" may be expressed using equation (6.6) in which we drop the second
term on the right-hand side because of our approximation (7.2). Equations (7.8), (7.9)
and (7.3) hence combine to give the simple result

DE � DE0
xc : �7:10�

If we write down equation (4.7) for a change Drs�r� around rs�r� and for another
change ÿDrs�r� around rs�r� ÿ Drs�r�, respectively, so that

Vxc�rs�r� ÿ Drs�r�� � Vxc�rs�r�� ÿ DVxc�rs�r�� ;
the arithmetic mean of the associated changes DExc yields

DExc � 1
2

P
s

�
Drs�r� DVxc�r; s� d3r : �7:11�

Employing the same approximations as in equation (7.6), we may give this result the
form

DE0
xc �

� jw2p"�r�j2 DV0
xc"�r� d3r �7:12�

or alternatively, if Dr�r� � 0 and equation (7.10) is used

DE � DE2p" : �7:13�
As DE0

xc may be expressed as

DE0
xc � ÿ

1
4

a
3
p

� �1=3 P
s

� �Dr0
s �r��2

�2r
para
s �r��2=3

d3r �7:14�

the results (7.10) and (7.14) substantiate the fact that the local energy is lowered by
spin-down/spin-up transfer. It appears to be particularly gratifying that this phenomen-
on can be described by such a simple equation as (7.10) and by the apparently quite
different equation (7.13). As is obvious from our derivation, the key result (7.10) does
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not depend on the particular ªXa-formº (3.21) for Exc that we have been considering
as the simplest conceivable approximation.

One could consider transferring the remaining 2p#-electron to the unoccupied 3s"-
level and possibly lowering the energy even further. However, in that case our assump-
tion

Dr0
"�r� � ÿDr0

#�r�
no longer applies thus invalidating our simple result (7.10) for DE. It turns out that DE
increases as a result of the contributions that we were so far able to neglect.

It can easily be verified that our key result (7.10) remains unchanged if one allows
for more than one electron transfer from spin-down to spin-up states that are paramag-
netically degenerate. In conclusion, it may be stated that such a transfer which maxi-
mizes the number of occupied spin-up states and thereby maximizes the multiplicity of
the associated N-electron state generally leads to the lowest total energy within the
range of orbital occupations for a particular angular momentum l. Given this limitation,
the above conclusion may be viewed as a form of Hund's rule. It will be the objective
of Section 9 to show that Hund's rule is also responsible for ferromagnetic order in
elemental metals.

8. Crucial Criterion for the Occupation Numbers in the Ground State

The total energy of the N-electron system is given by equation (6.1). If one were
dealing with a truly non-interacting system, E would merely consist of the sum of one-
particle energies associated with the occupied orbitals. In that case the sum takes its
minimum value when only the N lowest lying orbitals are occupied. For an interacting
system the sum over the one-particle energies competes with three more terms of con-
siderable magnitude. It is hence not at all evident that a consecutive filling of the one-
particle states up to the Fermi level EF still leads to the lowest total energy of the
system. That the latter nevertheless applies can be seen from the following considera-
tion.

We envision the true N-electron wavefunction to be mapped onto the associated
Slater determinant by the familiar adiabatic switching process. If one now varies the
true wavefunction Y by introducting a small perturbational potential dV�r� one can
show [64 to 67]1� that the associated total energy variation can be cast as

dE �P
i; s
�Eis ÿ EFs� dnis ; �8:1�

where EFs denotes the highest occupied level for either spin direction and nis is the
occupation number for the respective level.
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1� Though this paper is generally quoted as a key reference in density functional theory, the
validity of its essential result, viz. @E=@nis � Eis, is questionable because it violates the indispensa-
ble requirement that E must be N-representable. Exchange, for example, cannot be defined for a
non-integer number of electrons. Density functional theory interconnects a Slater determinant of
N orbitals with the true wavefunction of N particles, and hence, the total energy E cannot be given
as a function of independent occupation numbers because their sum must give N. Our equations
(8.1), (8.5) conform to this requirement whereas Janak's partial derivative is definitely in conflict
with it.



To simplify the following considerations, we assume that the ground state is, in fact,
characterized by a Slater determinant F with occupations

nis � 1 for Eis � EFs

0 for Eis > EFs
:

�
�8:2�

In performing the variation by replacing Y ! Y 0 one generates a new Slater determi-
nant F0 connected to Y 0 by the analogous adiabatic switching process. The orbitals
contained in F solve the KS-equations (4.3). In general, the entire set of solutions
forms a complete set of orthonormal functions out of which a complete set of Slater
determinants FK can be constructed. If one expands

F0 �P
K

cKFK

the quantities

n0is �
P�i; s�
K
jcKj2

define the new occupation numbers n0is � nis � dnis, where dnis has the property

dnis � < 0 for Eis � EFs

> 0 for Eis > EFs
:

�
�8:3�

(Note that the above sum for n0is runs over all configurations K that contain the orbital
wis�r�:�

The occupation numbers have the propertyP
i

nis �
P

i
n0is � Ns �8:4�

so that P
i

dnis � 0 : �8:5�

Clearly, only for the distribution (8.2) which leads to the admissible changes (8.3), do
we have

dE > 0 �8:6�
as required for the ground state. If we were to allow only one state below EFs to be
unoccupied or partially occupied, it would be admissible to choose the associated dnis

positive and another dnjs for a state yjs with Eis < Ejs < EFs negative such that

dnis � dnjs � 0

in accordance with equation (8.5). We would then obtain

dE < 0

in conflict with the requirement (8.6).
We thus arrive at the conclusion that only a consecutive filling of the one-particle

states conforms to properties of the ground state. In discussing the equal-density
N-electron wavefunction Yl for gradually decreasing coupling stength l�0 � l � 1� Levy
and Perdew [68] (and similarly Harris [44]) come to the conclusion that the associated
total energy El ªdoes not have to be the ground-level energyº. For l � 0 this clearly
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contradicts our result. If El were not the lowest eigenvalues in that case, then El would
be different from the sum of the consecutive one-particle energies Eis, and hence the
zero-interaction wavefunction, i.e. the pertinent N �N Slater determinant, would not
contain only the N lowest lying one-particle states, in contrast to what the above proof
states.

9. Ferromagnetic Order in Solids

We will now discuss the following problem: Given a solid whose electronic one-particle
states wis�r� are symmetrically, i.e. paramagnetically filled for either spin orientation up
to the Fermi level EF. We envision this system to be slightly shifted out of balance by
transferring some electrons from spin-down to spin-up states. What are the conditions
under which the system responds to this imbalance by further enlarging the number of
electrons transferred, thus developing ferromagnetic instability?

A transfer of electrons causes two effects:
1. The highest occupied level EF"�#� goes up or down, respectively, as a result of piling

up or lowering the number of occupied states by �DN. (We denote this change of EF"�#�
by DEF"�#�.)

2. All the occupied levels that characterize the new situation are shifted down or up,
respectively, by ÿDE"�#� as a result of the response of Vxc"�#��r� to the change
Dr"�#��r� / �DN. (We neglect the small k-dependence of this shift.)

The new Fermi levels are hence given by

Eferro
F"�#� � Epara

F"�#� � DEF"�#� ÿ DE"�#� : �9:1�
If we confine ourselves to infinitesimal changes, the quantity DEF"�#� can be expressed
in terms of DN and the density of states at the original Fermi level, D"�#��Epara

F ),

DEF"�#� � � DN

D"�#��Epara
F � : �9:2�

On the other hand, DE"�#� can be obtained to first perturbational order from equation
(6.6) if we again neglect the term that relates to changes of the total charge density.
Resorting as before to the approximations (6.6) and (7.1), we may cast DE"�#� as

DE"�#� � ÿ
�
V

DVxc"�#��r� jwpara
F" �r�j2 d3r ;

where the response DVxc"�#��r� can be expressed by using our approximation (4.7) as

DVxc"�#��r� � 1
3

Vpara
xc" �r�

Dr0
"�#��r�

r
para
" �r�

:

The change of the charge density is given by

Dr0
"�#��r� � �DN jwpara

F" �r�j2 :
As only states at the Fermi level are involved in the electron transfer, we have denoted
them symbolically by w

para
F" �r�.

Hence DE"�#� can be given the form

DE"�#� � �DNIStoner ; �9:3�
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where we have, for obvious reasons, abbreviated the pertinent integral as

IStoner � ÿ 1
3

�
Vpara

xc" �r�
jwpara

F" �r�j4
r

para
" �r�

d3r : �9:4�

For the sake of flexibility in the use of various approximations to the exchange±correla-
tion potential different from expression (4.7), it is advisable to cast DVxc"�r� as

DV̂xc"�r�

� Vxc"�rpara
" �r� � E jŵpara

F" j2; r
para
# �r�� ÿ Vxc"�rpara

" �r�; r
para
# �r� � E jŵpara

F# �r�j2�
E

;

�9:5�
where jEj � 1 and DV̂xc"�r� � DVxc#�r�=DN. Moreover, we have introduced ŵ

para
F" �r� as

being normalized to unity within the unit cell of volume W. The Stoner parameter then
takes the form

IStoner � ÿ
�
W

DV̂xc"�r� jŵpara
F" �r�j2 d3r : �9:6�

The criterion for ferromagnetic instability addressed above amounts to requiring

Eferro
F# > Eferro

F" : �9:7�
In that case the electron transfer leads to a highest occupied level in the spin-down
subsystem that leaves a set of unoccupied spin-up levels underneath. According to our
criterion derived in Section 8, this situation cannot persist, and the system will transfer
even more electrons from spin-down to spin-up states to fill up the empty states in
trying to equilibrate the Fermi levels. The instability criterion (9.7) can be rewritten
using equations (9.1) to (9.3). We obtain

IStonerD"�Epara
F" � > 1 �9:8�

which is the well known Stoner criterion [13]. The original derivation is, however, dis-
tinctly different from that given here. We could just as well cast this criterion into the
alternative form

IStoner ÿ 1=D"�Epara
F" �

IStoner
� x > 0 ;

where x has a certain resemblance to a magnetic order parameter: it is zero at the
onset of ferromagnetic instability and approaches unity as the density of states in-
creases and the Stoner parameter becomes larger. The stability of paramagnetic spin
order is indicated by negative values of x.

We can extend the above considerations to the case where the system has reached equi-
librium in building up ferromagnetic order. Analogous to the paramagnetic case we have

Eferro
F" � Eferro

F# :

But in contrast to the latter case we are now dealing with a stable situation. This fol-
lows from the fact that we now have

DEF" ÿ DE" > DEF# ÿ DE#
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if one transfers DN electrons from spin-down to spin-up states. If we use equations
(9.2) and (9.3) generalized for the present case, this inequality can be cast as

1=D"�Eferro
F" � ÿ I" > ÿ�1=D#�Eferro

F# � ÿ I#� ; �9:9�
where I"�#� is shorthand for the Stoner parameter defined for the ferromagnetic equilib-
rium case. We have verified the validity of this criterion for Fe, Co and Ni metal.

Since the density of d-band states is a rather structured function, it is possible that
the inequality (9.8) which can alternatively be given the form

1=D"�EF� ÿ I" < ÿ�1=D#�EF� ÿ I#� �9:10�
cannot be satisfied for the paramagnetic situation if EF"�#� happens to lie, for instance, in
a minimum of D"�E�.

If one were to start transferring electrons from spin-down to spin-up states and allow
Vxc"�#��r� to respond accordingly, E"F would in the present case still shift upward and E#F
correspondingly downward. But if E"F shifts into a steeply increasing section of D"�E�
and E#F likewise into an interval of higher D#�E�, the shifts relative to each other can
come to a halt and eventually reverse sign on further transferring electrons so that E"F
and E#F become equal again, now at a non-infinitesimally small magnetization
m � mB�n" ÿ n#�. After the shifts have reversed sign, the inequality (9.10) now applies,
which means that we are in a situation of ferromagnetic instability. The system will
hence transfer even more electrons causing E"F and E#F to shift further, i.e. past each
other, then come to another halt and finally become equal again. In the process the
system has built up even more magnetic moment per atom and finally reached a stable
situation described by the inequality (9.9). Since we have assumed that the inequality
(9.10) applies in the paramagnetic state with the reverse inequality sign, both the in-
equality (9.10) (with that sign reversed) and (9.9) describe a stable state, which ±± ac-
cording to our considerations in Section 8 ±± must be associated with the same ground
state energy, otherwise only one state could be the ground state. But the other one
would fulfill the same criterion, viz. being associated with N orbitals whose energy
levels Ei"�#� are consecutively filled up to the common Fermi level EF.

We hence arrive at the surprising result that paramagnetic order and ferromagnetic
order with a non-zero magnetic moment per atom may coexist for identical lattices and
for identical total energies. From experience with ferromagnetic materials at their equi-
librium lattice constants, this seems to be an unlikely situation. But it may well occur if
one subjects the system to changes in its lattice constant a. The total energy Epara�a� of
the paramagnetic material increases as a function of a on expanding the lattice from its
equilibrium state for a � a0

para and continuously changes into Eferro�a� at some lattice
constant a0

ferro > a0
para beyond which one is dealing with a state of non-zero magnetic

moment. Consequently, @E=@a will be discontinuous at a0
ferro, indicating a first-order

transition. As the above case requires Epara
F to lie in a range of low density of states, it

may be expected to occur mainly in midtransition metals.
Moruzzi and associates [35, 36] have studied the para-, ferro- and antiferromagnetic

behavior of the 3d-elemental metals as a function of their lattice constants. In some
cases they do, in fact, find first-order phase transitions of this kind, however, at consid-
erably expanded lattices, which opens up the possibility that antiferromagnetic order
may occur first at a smaller lattice constant. Their discussion of possible transitions is
similar to our considerations and relates to the behavior of Dpara

"�#��E� as a function of a,
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but the authors omit demonstrating that the total energies at a � a0
ferro must agree for

principal reasons. As has to be expected, one generally finds paramagnetic order at
smaller lattice constants and a transition into ferromagnetic order as one gradually ex-
pands the lattice. In the majority of cases the transition into the ferromagnetic state is
second order which means: when the point of coexistence is crossed, the inequality sign
in equation (9.10) changes from the reverse into the one actually displayed. Hence, at
the point of coexistence the inequality sign has to be replaced by an equality sign or
put differently: the total energy E changes smoothly across that point, and the transi-
tion is therefore second order.

In order to understand the general disappearance of ferromagnetic order at suffi-
ciently small lattice constants, one has to keep in mind that the d-band width increases
as a result of the enlarged overlap of the atomic d-orbitals. If one picks some atom as a
center and reexpands the overlap of neighboring d-orbitals in terms of partial waves
within the atomic sphere of that atom, a larger overlap gives rise to an increased ampli-
tude of the p-partial wave in that expansion. This p-contribution to the density r"�#��r�
within the d-state range of that atom is, of course, less than that of the d-partial wave.
Since Vxc"�#��r� / ÿ�r"�#��r��1=3, the potential thus moves up within that range as the
overlap increases. There are more states occupied for spin-up than for spin-down, and
hence the associated upward shift is larger for the spin-up subsystem so that EF" > EF#.
Consequently, the system starts transferring electrons to spin-down states thereby low-
ering the magnetic moment per atom. This mechanism is obviously quite general and
thus applies to any ferromagnetic material.

If one, conversely, expands the lattice of a ferromagnetic material, the d-bands nar-
row and the magnetic moment per atom now increases by the same argument as be-
fore. On further expanding the lattice these spin-up and spin-down d-bands shift past
each other until they hardly overlap anymore. Approximately at this stage the occu-
pied s±p band underneath the respective spin-down d-bands starts transferring elec-
trons to unoccupied spin-up states, be they d-like, as for the light transition metals, or
s±p like above the occupied spin-up d-bands as for past midtransition metals. Before
that happens the s±p bands are almost equally occupied and therefore have no sizable
effect on the magnetic moment of the atom. Now they begin contributing to a further
build-up of the total moment until there is a complete separation of the atoms which
possess the largest moment, except in the case of Sc, Rh and Pd. The free Sc atom has
a 3d14s2-configuration and thus possesses a moment of 1mB. Hence, the magnetic mo-
ment per atom M�a� runs through a maximum as one gradually expands the lattice.
The same phenomenon occurs with Rh and Pd metal, albeit for a different reason. The
pertinent free atoms do not possess any s-electrons and contain 9 and 10 d-electrons,
respectively, associated with 1mB and zero magnetic moment. The band structure of
their metals displays the typical features of d-bands with s±p bands lying below them.
At a stage of lattice expansion where the s±p bands are still almost equally occupied
and the d-bands for opposite spin directions already separated, the spin-down band
will contain more d-holes than the free atom because of the electrons it donates to the
s±p bands underneath. Hence, the total magnetic moment exceeds that of the free
atom in that case.

The Stoner criterion can be recast such that it becomes formally applicable also to
antiferromagnetic instability, which will be discussed in Section 11. To illustrate the key
idea one considers the system in its paramagnetic state to be subject to a small external

314 L. Fritsche and B. Weimert



magnetic field H parallel to the axis of spin alignment. In accordance with our assump-
tion in Section 2 we neglect the induced magnetic field that is associated with a spa-
tially varying magnetization m�r�:

From a first-principles point of view, the occurrence of a magnetic field requires a
complete rederivation of the KS-equations. The latter has been done within a conven-
tional DF-approach by Vosko and Perdew [69], where certain field affected portions of
the exchange±correlation interaction are absorbed into functionals whose connection to
wavefunction-representable pair densities remains unclear. For that reason it is extre-
mely difficult to assess the similarity between their and our expression for the suscept-
ibility. We advance a conceptually more transparent approach from the corresponding
N-electron SchroÈ dinger equation. For simplicity we neglect diamagnetic effects, that is,
we ignore the magnetic field-associated vector potential in the kinetic energy operator
of the N-electron Hamiltonian in equation (3.3). In that case the Hamiltonian has
merely to be supplemented by a one-particle portion

mB

PN
i�1

Hsi

that maps onto mBHs in the KS-equations on performing the adiabatic switching. The
exchange±correlation energy is, as before, given by the expressions (3.18) and (3.19)
and does not explicitly depend on H. (The correlation factors are essentially deter-
mined via the sum rule and are hence not directly affected as well.) The same conclu-
sions apply to Vxc�r; s�. The KS-equations thus remain formally the same except that
Vxc�r; s� is now corrected by a constant term mBHs.

The presence of the field merely causes the spin-up levels to shift down by mBH and
the spin-down levels to shift up by the same amount. Equilibrium of the new Fermi
levels leads to

DEF" � DE" � DEF# � DE# � 2mBH :

If we insert equations (9.2) and (9.3) into this result, the number DN of electrons trans-
ferred from the spin-down to the spin-up states can be written as

DN � mBHD"�Epara
F �

1ÿ IStonerD"�Epara
F � :

The magnetic moment is given by

DM � mB2 DN

so that DM may be expressed

DM � D"�Epara
F � 2m2

BH

1ÿ IStonerD"�Epara
F �

or alternatively

DM � ScoH ; �9:11�
where

S � 1

1ÿ IStonerD"�Epara
F � �9:12�
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is the Stoner enhancement factor and

c0 � 2m2
BD"�Epara

F � �9:13�
the Pauli susceptibility. As follows from the above derivation, Stoner enhancement oc-
curs as a phenomenon of physical necessity, which means it cannot be switched off by
any means. It is also obvious from the form of S that the paramagnetic state can only
be stable as long as IStonerD"�Epara

F � < 1 in agreement with the previous consideration.
Though the equations (9.11) to (9.13) represent a well-known result which has been

derived by Stoner [13] and more recently by Vosko and Perdew [69] and by Janak [32],
for example, who also employ the same approximations, our derivation is more straight-
forward and merely draws on the simple arguments already used in connection with the
Stoner criterion. Moruzzi and Marcus [37] use a different approach to determine the
effective susceptibility c � Sc0 by employing their fixed moment method which yields
the self-consistent total energy E as a function of the magnetization M per lattice cell.
On numerically forming the second derivative one obtains

c � �@2E=@M2�ÿ1 :

In applying this method one avoids perturbation theoretical arguments and simplifying
assumptions, e.g. neglect of k-dependences: however, the method obscures a direct in-
sight into the mechanism of Stoner enhancement.

Interestingly, the derivation of Stoner's criterion does not require any consideration of
the total energy balance. On the other hand, we know that ferromagnetic order can only
occur as a result of lowering the total energy. If one exploits this property, one gains in-
sight into an additional factor that influences the strength of ferromagnetic instability.
According to our result in Section 6, the energy gain DE associated with the transfer of
DN electrons from spin-down to spin-up states is to a good approximation given by

DE � DE0
xc : �9:14�

We recall from equation (7.11) that DE0
xc can be expressed as

DE0
xc � 1

2

P
s

�
Dr0

s �r� DVxc�r; s� d3r : �9:15�
We observe that

Dr0
"�#��r� �

P�DN�

i
jwi"�#��Ei; r�j2 ;

and hence equation (9.15) can be recast as

DE0
xc � 1

2

P�DN�

i
Eferro

i" ÿ P�DN�

i
Eferro

i#

� �
; �9:16�

where we have made use of equation (6.6) and the fact that

Epara
i" � Epara

i# :

The number DN of electrons transferred can be expressed as

DN � �Epara
F �DEF"�#�

Epara
F

Dpara
" �E� dE ; �9:17�
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which defines the width DEF"�#� of the energy interval where electronic levels are filled
or depleted, respectively. The sums over Eferro

i"�#� in equation (9.16) can be rewritten in
analogy to equation (9.17) so that DE takes the form

DE � 1
2

P
s
� �Epara

F �DEFs

Epara
F

Dpara�E� �Eÿ DEs� dE ; �9:18�

where ÿDEs � �DE"�#� describes the upward (downward-) shift of the density of states
in the spin subsystems due to equation (9.3). Because of equation (9.17) the two con-
tributions in equation (9.18) that contain ÿDEs explicitly, sum up to

DE0 � ÿDN DE" :

This is identical to the energy gain in an atom where one has transferred DN electrons
from spin-down to spin-up states that are paramagnetically degenerate.

The sum of the remaining two integrals yields

DE1 � DN

2
��E" ÿ �E#� ;

where �E"�#��>0� is the center of gravity of the paramagnetic energy interval into which
electrons are promoted or from which they are removed, respectively. In an atom these
two quantities agree, and hence DE1 becomes zero. In a solid we have

DE � DE0 � DE1 :

For a d-band material with a half-filled band, the widths of the intervals where states
are filled or depleted, respectively, in the process of building up spin-order, are approxi-
mately equal so that jDE1j is zero or attains a very small value. For more than half-
filled d-bands the spin-up interval becomes larger on average than the spin-down deple-
tion interval. Hence DE1 will preferentially be positive in that case and negative for
less than half-filled bands. In the latter situation DE0 and DE1 act in the same direc-
tion so that one might expect ferromagnetic order to occur more likely. In any case, the
Stoner criterion provides the ultimate decision. However, as one moves from the very
light 3d-elements to the heavier ones, the Stoner criterion should not uncritically be
applied because some elements change into antiferromagnetic order with a possible
energy gain larger than for ferromagnetic order. Chromium metal turns out to be an
example where only antiferromagnetic order leads to a lowering of the total energy. In
the case of b.c.c. iron one finds both a stable ferromagnetic and antiferromagnetic spin
order, the latter being associated with a slightly higher total energy, but lower than in
the paramagnetic case [36]. If the Stoner criterion is satisfied for more than half-filled
bands where DE1 tends to counterbalance the energy gain DE0, the ferromagnetic order
will gradually lose its strength as one further fills up the d-bands. One can see from this
that the degree of band filling does not in itself provide a criterion for ferromagnetic
instability. The absence of a pure band filling criterion is also evident when comparing
the 3d-metals to those of the 4d-series. The latter lack any example of ferromagnetic
order although the features of their d-bands and the systematics of band filling resem-
ble closely what is typical of the 3d-metals. The 4d-bandwidths are only somewhat lar-
ger than those of the 3d-bands. Despite the striking similarities in the band structures
the non-occurrence of ferromagnetic order in the 4d-series is in complete accord with
the predictions of the Stoner criterion, as will be shown in Section 12.
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It will also become apparent from the results discussed in Section 12, that depend-
able magnetic moments and predictions on the exact onset of ferromagnetic order as a
function of the atomic number require an approximation to Vxc�r; s� that is less crude.
Though paramagnetic band structures that derive from an Xa-based local spin density
(LSD-) approximation to Vxc�r; s� are practically identical to those that are based on
considerably more sophisticated expressions for Vxc�r; s�, the Xa-approximation defi-
nitely overestimates the spin-charge response properties characterized by IStoner. This
effect of overshooting can be diminished either by reducing the value of a or by incor-
porating correlation in a fittingly local fashion. The latter amounts to adding a (nega-
tive) function of the spin-down density to the exchange-portion in Vxc�r; s� for spin-up
and the same function for spin-down, but formed with the spin-up density. In this way
Vxc�r; s� is lowered for either spin direction, but less in the spin-up system than in the
spin-down system so that the asymmetry betwen the two spin-dependent potentials and
consequently IStoner is reduced if one keeps the asymmetry in the pertinent spin-re-
solved densities r"�#��r� unchanged. The XCa-potential (4.12) constitutes a simple exam-
ple of this kind. To date no study has investigated whether this approach to reducing
the V"xc=V#xc asymmetry is only a substitute for constructing ªnon-localº exchange poten-
tials (see e.g. Fritsche and Gu [70]). These potentials are based on a shape-assumption
for f""�##��r0; r� (e.g. a Gaussian) without further simplifications for satisfying the sum
rule (3.15) and forming Vxc�r; s� according to equations (3.18), (3.19), (3.20) and (4.8).

The magnetization

m�r� � mB�r"�r� ÿ r#�r��
is sizable in magnitude only within the d-shell of the atoms and drops towards the inner
and outer boundaries. Because the sampling width of f""�##��r0; r� is larger in regions of
lower density r"�#��r�, it feels an average spin-density difference around a point r0 that is
reduced compared to its local value at r. This reduction effect should be largest at the
beginning of the d-series where the d-densities are smallest.

The effect of this sampling width phenomenon is demonstrated in Fig. 4a which refers
to a modified free Ni atom where the occupation numbers have been chosen according
to the respective fractional values which one obtains from a self-consistent calculation
on ferromagnetic bulk Ni. The dotted and solid curves refer to the results of an
Xa-calculation (a � 0:716) and to one based on a ªnon-localº exchange±correlation poten-
tial, respectively. As one can see from the particularly marked curves for the magnetiza-
tion, the non-local character of exchange and correlation leads, in fact, to a reduction of
the magnetization where it attains its peak values. The other two curves refer to the
potential asymmetry associated with ferromagnetic spin order. Obviously the amplitude
of the main structure of the asymmetry is greatly reduced in the non-local case. The
fact that the asymmetry changes sign towards the core region but still within the range
of the d-electrons, makes the non-locality of the exchange potential particularly ob-
vious. The change of sign is associated with the reversal of the direction of m�r� as one
penetrates into the core region. The analogous situation for ferromagnetic bulk Ni is
shown in Fig. 4b. However, instead of a non-local potential we have used the Perdew-
Wang form of Vxc�r; s� [33] which includes a correlation portion in a local approxima-
tion as the XCa-potential discussed in Section 4. Though the reduction in the main
structures of the asymmetry is less in this case, the decrease in the magnetization is
almost identical to that in Fig. 4a. If one uses a more recent form of Vxc�r; s� (generally
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referred to a GGA II [71]) that accounts for non-local effects by including gradient
corrections, one obtains curves between those shown in Fig. 4b.

Whether the latter potentials really present a more reliable basis with improved pre-
dictive power over LSD-potentials, may be questioned as stated, e.g. by Singh and Ash-
kenazi [72]. If one wishes to go beyond the LSD-approximation in a consistent way
that ensures N-representability, there is no alternative to the approach outlined in Sec-
tion 5.

Attempts made by Stollhoff et al. [73] to include correlation in a Hubbard-type treat-
ment are open to discussion in many respects. It remains unclear, for example, how a
double-counting of the electron±electron interaction can safely be excluded. The Cou-
lomb interaction appears in the free part of their Hamiltonian via the canonical band
structure (containing the Hartree potential within the atomic spheres) and in the Hub-
bard parameter U as well.

10. Ferromagnetic Order in Molten Metals

As is evident from the derivation of Stoner's criterion in Section 9, the occurrence of
ferromagnetism is not tied to a periodic array of atoms. The Stoner parameter IStoner is
essentially defined by the properties of the individual atom, and the definition of
D"�Epara

F" � does not require the electronic states to be Bloch states though they will in
general be itinerant or linear combinations of such states. Hence, ferromagnetism must
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Fig. 4. a) Asymmetry �Vxc"�r� ÿ Vxc#�r��=Vxc"�r� for a free Ni atom where the fractional occupation
numbers have been chosen in accordance with those from a self-consistent calculation on ferro-
magnetic Ni metal. The dotted curve, displaying two maxima, refers to an Xa-based calculation,
the solid sine-like curve exhibits the analogously obtained asymmetry of a non-local potential [9]
based on a Gaussian correlation factor. The bell-shaped curves describe the associated magnetiza-
tions multiplied by 4pr2. b) Asymmetry �Vxc"�r� ÿ Vxc#�r��=Vxc"�r� of the self-consistent exchange±
correlation potential inside the muffin-tin sphere of Ni metal. The solid curve displaying two max-
ima refers to the potential suggested by Perdew and Wang [33], the dotted curve describes the
analogous result for the Xa-potential defined by equation (4.7) where a � 0:716. The solid and
dotted bell-shaped curves, referenced to the right-hand side scale (arbitrary units) represent the
associated magnetizations multiplied by 4pr2



also occur in non-crystalline materials if they satisfy the Stoner criterion. As the ferro-
magnetic order of the ground state is only gradually reduced by raising the tempera-
ture, one should be able to observe ferromagnetism even in liquids, i.e. in molten me-
tals, if one can keep them molten below their Curie temperature. In fact, recent
experiments on a levitating sphere of molten Co80Pd20 in a state of depressed freezing
give convincing evidence of ferromagnetic order in a liquid metal [74, 75]. The authors
demonstrate that the sphere is ferromagnetically attracted by a nearby magnet and that
the temperature dependence of its susceptibility follows a Curie-Weiss law indicating
the existence of ferromagnetic long-range order below the Curie temperature.

11. Antiferromagnetic Order

Within the present concept antiferromagnetic order represents a particular case of colli-
near spin order that can directly be understood by discussing equation (3.31) relating to
the energy balance. As already indicated in Section 4, the conditions under which antifer-
romagnetic (AF-) order can occur require an unfrustrated array of atoms such that the
structure can be partitioned into two identical spin-up/spin-down sublattices shifted rela-
tive to each other by a lattice translation. If we first consider this array to be in a paramag-
netic state, an AF-instability can only occur when the total energy of the system drops on
allowing the spin-up densities to increase in one of subsystems and the spin-down densities
correspondingly in the other subsystem. This situation is schematically depicted in Fig. 5.

The periodic increase and decrease of the spin-up and spin-down density one runs
through as one moves along a line ABAB. . . can be viewed as reflecting a static spin-
density wave (SDW) whose wave vector Q is perpendicular to the planes interconnect-
ing equivalent atoms, and Q � 2p=a is given by the distance a of these planes. The
principal features of antiferromagnetic order as depicted in Fig. 5 are in no ways af-
fected by the insertion of ªmagnetically inertº atoms (e.g. oxygen) between magnetized
atoms A and B. A Bloch state for spin-up that would display an enlarged amplitude in

A (compared to the paramagnetic si-
tuation) and a diminished amplitude in
B would, of course, continue with
some amplitude across an atom sitting
between A and B. The Bloch state for
spin-down behaves in the reverse way
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Fig. 5. Change of the square modulus of
the spin-up/spin-down states of a d-band in
setting up antiferromagnetic order. The
dashed curves refer to the paramagnetic
states, the solid ones to the antiferromag-
netic situation. The spatial dependence is
shown along an axis z interconnecting the
centers of neighboring atoms (A and B)
that belong to different sublattices



as far as its amplitude changes in A and B are concerned, but it would have the same
amplitude in the atom in between. The gain-exchange-energy that controls the distor-
tion of the Bloch states in those particular atoms is more or less a local process, and
the coupling of A and B via magnetically inert atoms in between results trivially from
the itineracy of the Bloch states. There is no extra ªsuperexchangeº mechanism or
ªindirect exchangeº as suggested by Kramers [76] and by Anderson [77]. It should be
borne in mind, however, that the treatment of AF-order within density functional theo-
ry may occasionally run into difficulties because of possible large errors in the spin-
resolved densities that have been discussed in Section 5.

Clearly, in the case of AF-order, it is impossible to derive an instability criterion that
refers to relative shifts of the spin-up/spin-down Fermi energies induced by spin asym-
metry. The uppermost filled states remain at equal levels as AF-order builds up, and
even the entire band structure is hardly affected. But there are small common shifts
around Epara

F that are crucial in bringing about AF-order. Nevertheless, there is no
change at all in the occupation of the band states in going from the paramagnetic to
the antiferromagnetic spin order. Only the amplitude of a spin-up state, for example, is
slightly enlarged in an atom that builds up a resulting spin-up magnetization, and the
amplitude of the same state is reduced within the atoms of the other sublattice whose
magnetization points downward.

To understand the underlying mechanism we rewrite the change of the kinetic energy
in the form

DTeÿe �
P
i; s

DEis ÿ
P

s

�
Drs�r� DVxc�r; s� d3r ;

where we have used the KS-equations (4.3) and assumed, as before, that

Dr"�r� � ÿDr#�r� : �11:1�
Moreover, we have to first order in Drs�r�

DVxc"�#��rA� � ÿDVxc"�#��rB� ; �11:2�
where rA and rB are equivalent positions in the atomic unit cells A and B.

If we recast the energy change DE, given by equation (3.31) using the above expres-
sion for DTeÿe and equation (7.11), we obtain

DE �P
i; s

DEis ÿ 1
2

P
s

�
Drs�r� DVxc�r; s� d3r : �11:3�

Since ÿDVxc is essentially proportional to Drs, the associated integral with its prefactor
±±1/2 represents a positive quantity that increases � Dr2

s , as one departs from paramag-
netic order. On the other hand, it follows from equation (11.2)�

rpara
s �r� DVxc�r; s� d3r � 0 ; �11:4�

which meansP
i; s

DEis � 0 �11:5�

to first perturbational order. Equation (11.2) is only correct to first order as regards the
changes DVxc"�#��r� caused by the changes Dr"�#��r�. The latter are definitely identical

First-Principles Theory of Ferromagnetic and Antiferromagnetic Order 321



except for the sign. If one would go on to second order and insert the corrected DVxc

into equation (11.4), the integral would not vanish any more and (apart from the sign)
become proportional to the second term on the right of equation (11.3). The latter,
however, would not be outweighed by the value that the new sum over DEis now at-
tains, so that our first-order argument remains qualitatively valid. Hence, on introduc-
ing a slight antiferromagnetic asymmetry, DE can only become negative if one goes
beyond that perturbational order concerning the quantities DEis. The crucial effect play-
ing a role at that level is the so-called Fermi surface nesting that has first been dis-
cussed by Overhauser [78] for the case of an electron gas. Lomer [79] and later Asano
and Yamashita [80] and KuÈ bler [81] applied this idea in analyzing the antiferromagnetic
order in Cr metal. To elucidate the origin of Fermi surface nesting one envisions the
bands of the paramagnetic band structure to be folded back to the smaller antiferro-
magnetic Brillouin zone by the vector Q out of the new reciprocal space. Formerly
disjunct bands now intersect, and other bands that were formerly a continuation of
each other have now one point in common. As one gradually introduces an antiferro-
magnetic spin asymmetry, the lattice potential attains the new AF-translational symme-
try. As a result, a gap opens up around each such common band point, and a nesting of
new states occurs, that is a concentration of states underneath and above the gap edges.
The energies Eis around the lower edge drop by DEis as a gap forms: those around the
upper edge increase correspondingly so that the sum (11.5) remains zero to a very
good approximation if the gaps occur well below the Fermi level. However, if gaps of
appropriate width form around the Fermi level, only states underneath the lower band
edge are occupied, and hence the sum (11.5) reduces to that over changes DEis of those
states, which means that the sum is now sizably negative.

The energy gain associated with that negative sum proves to depend on Drs�r� less
than to the second power. The total energy can hence establish an ªantiferromag-
neticº minimum as a result of the second term on the right-hand side of equation
(11.3) that provides a counterweight / �Drs�r��2. This energy gain can be enlarged
slightly further if one allows the nuclear positions Ra to undergo minor displacements
DRa such that

DRa � D cos �DQ �Ra� ;
where Da � 2p=DQ is large compared to a and DQ is in the direction of Q. The period
Da of this long wavelength distortion has to be chosen such that the points of band
intersection for zero perturbation coincide exactly with the Fermi level. When antiferro-
magnetic order builds up, the states of the lower band edge can now move further
away from the Fermi level than was previously possible when the points of intersection
were above EF, as happens to be the case with undistorted Cr metal. The occurrence of
a positive lattice distorsion energy does not prevent the system from eventually gaining
in total energy since this extra energy increases only as D2, whereas the band energies
drop as a function of D less than to the second power. The original translational sym-
metry of the array of nuclei is now broken, which means that r�r� can no longer be
invariant under the old lattice translations, but rather forms a charge density wave
(CDW) that fits onto the new lattice of supercells with a lattice constant Da in the
directions of DQ. In the following we shall ignore this CDW-mechanism. The experi-
mental evidence of a CDW in Cr metal and certain properties connected to it are ex-
tensively reviewed in the article by Fawcett [82].
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The occurrence of AF-gaps due to nesting can have dramatic consequences in cases
where the band structure is less complicated than for the transition metals. We have
calculated, for example, the band structure of b.c.c. K metal at a considerably enlarged
lattice constant (aexpanded � 2a) so that the hybridization of the s±p bands is completely
removed, and one ends up with a pure s-valence band which, however, still possesses a
band width of about 0.4 eV. On reducing the Brillouin zone in the h100i direction as
described above (ignoring the possibility of a CDW), one obtains only bands that be-
come completely split into separate portions above and below EF. Hence, AF-order
leads in that case to perfect insulation, that is to a completely filled split-off valence
band that is still doubly spin degenerate and accomodates two valence electrons per
lattice unit (�2 atoms).

The new states involved in the nesting give rise to the static spin-density wave
(SDW) of wavelength l � 2p=Q, that is they display just the behavior we were refer-
ring to at the beginning of this section: as compared to their paramagnetic counterparts
their amplitude for spin-up is enhanced within the atomic sphere A and correspond-
ingly lowered in sphere B. The reverse changes occur with the spin-down amplitudes.
This behavior becomes evident from a simple calculation where one forms the new AF-
states by linearly combining paramagnetic states that belong to band n1, n2 close to an
intersection

wAF
nAFs�k; r� � Ukw

para
n1s �k; r� � Vkw

para
n2s �kÿQ; r� :

The paramagnetic band states may be cast as

wpara
ns �k; r� � 1����

V
p upara

n �k; r� eikr

with upara
n �k; r� denoting the lattice-translationally invariant Bloch factor whose norm

with respect to the lattice cell is set equal to Wpara. For valence d-states these factors
are all very similar and essentially consist of a d-type partial wave inside the pertinent
atomic sphere. In the following we shall therefore omit distinguishing them and summa-
rily use the notation upara

nd
�k; r).

An elementary calculation yields

jUkj2
jVkj2

�
� 1

2
1� ~E

j ~Ej

� �
; �11:6�

where

~E � Q � ~k; �~E� Q2�
and ~k is defined through

k � kQ=2 � ~k :

Here kQ=2 denotes the vector parallel to k whose projection onto Q equals 1
2 Q.

The new band energies evolve as

EAF
ns �k� � Epara

ns �k� � ~Ens�k� ;
where

~Ens�k� �
�����������������
D2

Q � ~E2
q

�11:7�
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with 2DQ denoting the gap energy defined by

2DQ � 2
V

�
V

jupara
nd
�kQ=2; r�j2 cos �Q � r� DVxc�Q; r; s� d3r

������
������ : �11:8�

Note that we have neglected the ~k-dependence of upara
nd
�k; r� within the envisaged range

of k.
On forming the contribution of the new states to the spin-resolved density, one ob-

tains

jwAF
nAFs�Q; ~k; r�j2 � 1

V
jupara

nd
�kQ=2; r�j2 �1� qs�~k; r�� ; �11:9�

where

q"�#��~k; r� � �2 jU*kVkj cos �Q � r� : �11:10�
At the centers pertaining to atoms A and B we have, respectively,

cos �Q � r� � �1 :

Hence, as stated before, there is an increase of charge density for s � �1 in the atomic
cell ªAº and a decrease in the atomic cell ªBº. The reverse changes occur for s � ÿ1 so
that the total charge density retains to a good approximation its paramagnetic value.

The quantitity DQ in equation (11.8) is similarly determined as in the BCS-(Bardeen-
Cooper-Schrieffer) theory of superconductivity [83]. If we use, for simplicity, a local
approximation to DVxc�r; s� we may write

DVxc�Q; r; s� � @Vpara
xc

@rs

Drs�Q; r� : �11:11�

We assume r to refer to an origin in the unit cell of atom A where the magnetic mo-
ment points upward. Because of equation (11.1), r"�#��Q; r� may be expressed as

r"�#��Q; r� � � 1
2

P
~k�occup:�

�jwAF
nAF"�Q; ~k; r�j2 ÿ jwAF

nAF#�Q; ~k; r�j2� �11:12�

or alternatively, by using equations (11.6), (11.9) and (11.10)

Dr"�#��Q; r� � �jupara
nd
�kQ=2; r�j2 cos �Q � r� 1

V

P
nAF

~k�occup:�

DQ�����������������
D2

Q � ~E2
q ; �11:13�

where the sum runs over an appropriately chosen vicinity of ~k � 0. For simplicity we
have assumed that the square moduli of the Bloch factors at the various gaps are equal.
Inserting expression (11.11) together with (11.13) into equation (11.8) we may cast the
result in the form of the familiar BCS-gap equation (see also Overhauser [78])

DQ � IQ
1

Nc

P
nAF

~k�occup:�

DQ�����������������
D2

Q � ~E2
q ; �11:14�

where

IQ � 1
V2

�
V

jupara
nd
�kQ=2; r�j4 @Vpara

xc

@rs

cos2 �Q � r� d3r

������
������ ; �11:15�
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and Nc denotes the number of paramagnetic unit cells. Of course, equation (11.14) can
only be satisfied for a non-vanishing DQ if the total energy drops on forming the gaps
for the nesting vector Q.

As already indicated in Section 9, we now take up the idea of detecting spin-order
instabilities by looking for singularities of the susceptibility which, in the present case,
has to be Q-dependent and is defined by

M�Q� � c�Q�HQ �11:16�
with HQ being the amplitude of the magnetic field

H � HQ cos �Q � r� ; �11:17�
and with M�Q� denoting the induced magnetic moment within the formerly paramag-
netic lattice cell. Though we assume that Q may now be different from 2p=a, equations
(11.6) to (11.10) still apply. We assume, in analogy to the case of an external uniform
field, that spontaneous antiferromagnetic order has not yet occurred so that the abso-
lute value of Q may be chosen at will, but its direction is already taken parallel to the
wave vector of the possible spontaneous spin density wave.

The magnetization is given by

m�Q; r� � mB�Dr"�Q; r� ÿ Dr#�Q; r��
which by using equation (11.1) may be written

m�Q; r� � 2mB Dr"�Q; r� ; �11:18�
where Drs�Q; r� is defined via equation (11.13) if there is no external magnetic field.
The spatial periodicity of jwAF

nAFs�Q; ~k; r�j2, described by the factor cos �Q � r� in equation
(11.10), carries over to rs�Q; r� and reflects the analogous periodicity of the perturbing
potential DVxc�Q; r; s�. In the presence of the external field (11.17) the effective poten-
tial Veff�r; s� in the KS-equations (4.3) has to be replaced by

V 0eff"�#��r� � mBHQ cos �Q � r� ;
where the prime at the new effective potential is meant to indicate its change due to
the response of Vxc�r; s� to the new densities rs�r�. This change amounts to replacing
DVxc"�#��Q; r� in equation (11.8) by

DVxc"�#��Q; r� � mBHQ cos �Q � r�
so that DQ decomposes into two portions, the second of which is proportional to HQ. If
we use again the approximation (11.11) and observe that jDr"�Q; r�j /M�Q� within
the paramagnetic unit cell, the first term is proportional to M�Q�. Hence, Drs�Q; r� in
equation (11.13) decomposes into analogous portions, and we obtain from equation
(11.18) after integration over the paramagnetic unit cell with center at r � 0

M�Q� � c0�Q�
IStoner�Q�M�Q�

2mB
�H�Q�

� �
; �11:19�

where

c0�Q� � 2mBJ0�Q� J1�Q� 1
Nc

P
nAF

~k�occup:�

1�����������������
D2

Q � ~E2
q �11:20�
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and

Jn�Q� � 1

WA
para

�
WA

para

jupara
nd
�kQ=2; r�j2 cos�n�1� �Q � r� d3r

�������
������� :

Furthermore, IStoner�Q� is defined

IStoner�Q� � IQ=J1�Q� : �11:21�
Equation (11.19) can be recast in complete analogy to (9.11)

M�Q� � S�Q� c0�Q�H�Q� ; �11:22�
where S�Q� denotes a generalized Stoner-enhancement factor

S�Q� � 1
1ÿ IStoner�Q� c0�Q�=�2mB�

:

Antiferromagnetic instability is therefore associated with

IStoner�Q� c0�Q�=�2mB� > 1 ; �11:23�
which is tantamount to requiring DE < 0 for H � 0.

As can be seen from the definitions of the integrals Jn�Q�, the cosine factors can
cause only little Q dependence if Q ranges from 0 to 2p=a since the integrals merely
run over the paramagnetic unit cell. Also, IQ can only weakly depend on Q since the
pertinent integral contains the square of the cosine. Furthermore, Bloch factors refer-
ring to d-band states do not sensitively depend on Q. The quantity

1
Nc

P
nAF

~k�occup:�

1�����������������
D2

Q � ~E2
q �11:24�

refers to the number of states per unit cell and energy range DQ that contribute to the
spin-density wave. As long as the criterion (11.23) for antiferromagnetic instability is
not satisfied, DQ is proportional to HQ�! 0� so that expression (11.24) becomes identi-
cal with the density of states at EF which we denote by DQ�Epara

F �. The susceptibility may
therefore be cast as

c0�Q� � 2mBJ0�Q� J1�Q�DQ�Epara
F � :

The criterion (11.23) then takes the form

IStoner�Q� J0�Q� J1�Q�DQ�Epara
F � > 1 ;

which is formally identical with the criterion (9.8). As follows from their definition, the
quantities Jn�Q� are close to unity, and IStoner�Q� for Q 6� 0 differs only little from IStoner

familiar from Section 9. Obviously, both antiferromagnetic and ferromagnetic order re-
quire approximately the same density of states. In some cases, where DQ�Epara

F � for
Q � 0 is not large enough to satisfy the Stoner criterion for ferromagnetic order, Fermi
surface nesting for Q � 2p=a may cause DQ�Epara

F � to increase sufficiently so that the
above criterion for antiferromagnetic order is fulfilled. Chromium metal represents an
example of this kind, whereas for Pd metal DQ�Epara

F � is smaller at Q � 2p=a compared
to that at Q � 0. This has been shown in a study by Sandratskii and KuÈ bler [40] which
is based on a one-particle Hamiltonian for a spiral magnet.
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Conventional susceptibilities c�Q� are calculated by using a supercell technique in a
frozen spin wave approximation (see e.g. Jarlborg [84]) or within and beyond the random
phase approximation (RPA) which we mention here only in passing, see [85 to 87].

12. Results

Our calculations have been carried out by using FLAPW-code ªWien 95º [88] which
comprises recent state-of-the-art options for exchange and correlation (as the PW-ex-
pression, for example) along with its simplest version, the Xa-form. In the latter case
we have set a � 0:716 (according to equation (3.22)) if not stated differently. Results
on the magnetic moment per atom for the 3d-, 4d-elemental metals are plotted in
Figs. 6a, b. We deciced to perform all calculations for the experimental lattice constants
as compiled, for example, by Pearson [89]. There is much reason to believe that the
electronic structure of these metals, as far as it is accessible to the experiments, is well
described by the proven approximations to exchange and correlation if one uses the
experimental lattice parameters. However, the lattice constants obtained from the mini-
mum of the self-consistent total enery can be sizably different for different functional
forms of the exchange-correlation energy. On the other hand, magnetic properties de-
pend sometimes quite sensitively on changes of the interatomic distances. This is parti-
cularly obvious for f.c.c.-Pd metal which becomes ferromagnetic with a magnetic mo-
ment of 0.12mB on expanding the lattice by 5%, (see Fritsche et al. [90]). A systematic
study on this subject has been carried out by Moruzzi et al. [35 to 39]. As for the
particular case of Mn metal which is known to have a complex structure [19, 20] we
have alternatively performed calculations for the simpler f.c.c. and b.c.c. structures with
lattice parameters suggested by Moruzzi et al. [91] and Papaconstantopoulos [92].

It is obvious from Figs. 6a, b that the Xa-derived magnetic moments generally exceed
the respective PW-values with the magnitude of the difference depending on the speci-
fic element. Particularly striking differences occur for the elemental metals of Sc, Cr,
b.c.c.-Mn, Y and Pd. As already discussed in Section 9, Xa-potentials tend to overesti-
mate the formation of magnetic order. The effect of correlation (or of the non-locality
of Pauli-exchange) can to some extent be mimicked by reducing the value of a. This
can be seen from Table 1 where we have listed the magnetic moments obtained from
two Xa-based calculations along with those that refer to potentials involving correlation
within a certain approximation. Not quite unexpectedly, in the case of Sc metal, for
example, one has to reduce a to an unphysically small value of 0.5 to avoid a build-up
of ferromagnetic order. (As to the physically meaningful range of a see Schwarz [54].)
However, if one uses the XCa-potential given by equation (4.12) and assigns to ac a
value close to the center of its admissible range, Sc becomes paramagnetic and Fe, for
example, remains ferromagnetic with a magnetic moment that is practically identical
with the corresponding PW-value. Nevertheless, we have chosen to perform practically
all calculations beyond the Xa-approximation by employing the widely used PW-form
of Vxc�r; s� to alleviate a comparison with results of other authors.

The PW-results shown in Figs. 6a, b are in good agreement with the experiments and
comparable calculations by other authors. For that reason we omit commenting on
them explicity.

However, it is worth discussing the case of Cr metal in some more detail. Irrespective
of the exchange±correlation potential we are using, the calculation yields an antiferro-
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magnetic ground state. This is in agreement with neutron scattering experiments by
Bacon [93] and with calculations by Kulnikov et al. [94] and KuÈ bler et al. [81] who
obtain a magnetic moment of approximately 0.6mB per atom corroborating the experi-
mental results. Calculations performed by Chen et al. [95] and Skriver [96] for the ex-
perimental lattice constant yield also antiferromagnetic order, but the magnetic mo-
ments strongly deviate from the experimental value. However, if one uses the same
experimental lattice constant, the Xa-based calculation yields a much larger moment

328 L. Fritsche and B. Weimert

Fig. 6. Magnetic moments per
atom (in units of Bohr magnetons)
as a function of the atomic num-
ber Z for a) 3d-transition metals
and b) 4d-transition metals. The
results marked by diamonds refer
to the Xa-potential �a � 0:716�,
those marked by triangles to the
PW-form of the exchange±corre-
lation potential. The square and
cross in Fig. 6b for Z � 46 (Pd)
corresponds to an Xa- and a PW-
calculation, respectively, where Pd
has been assumed to have h.c.p.-
structure with the interatomic spa-
cing being nearly identical to that
of f.c.c.-Pd. In Fig. 6a we have ad-
ditionally marked results on b.c.c.-
Cr �Z � 24� and on b.c.c.-Mn
�Z � 25� referring to antiferro-
magnetic order. Squares corre-
spond to the Xa-approximation,
crosses pertain to the PW-approxi-
mation. For simplicity we have
plotted these results as if they
were formally associated with ne-
gative magnetic moments. For
either form of the exchange±cor-
relation potential the calculation
yields paramagnetic order for
f.c.c.-Mn which we have omitted
to display

Ta b l e 1
Magnetic moments (in units of mB) for Fe, Co and Ni obtained by using different ex-
change±correlation potentials (PW: Perdew-Wang [33]; MJW: Moruzzi, Janak, Williams
[91]; GGA II [71])

Fe Co Ni

Xa, a � 0:716 2.60 1.69 0.67
Xa, a � 2

3 2.22 1.66 0.63
PW 2.21 1.57 0.61
MJW 2.20 1.58 0.61
GGA II 2.23 1.60 0.63



which may be due to fact that the Xa-equilibrium lattice constant is sizably larger and
that the magnetic properties of chromium respond in a particularly sensitive way to
changes in the lattice constant. One has to reduce the scaling factor a considerably to
obtain reasonable agreement with the experimental magnetic moment, which has also
been demonstrated by Asano and Yamashita [80] and by Chen et al. [95]. A similarly
unreliable result is obtained if one uses the GGA II potential that has been designed to
be superior to the exchange±correlation potentials used so far. The pertinent calcula-
tion yields a magnetic moment of 1.4mB at the experimental lattice constant, see Singh
et al. [72]. Though the calculations by Moruzzi and Marcus [38] are essentially based on
the proven exchange±correlation potentials of v. Barth and Hedin [34], the authors
obtain antiferromagnetic order at a lattice constant larger than the experimental one.
Also, the magnetic moment comes out too large by almost a factor of two.

As we have already discussed in Section 11, one has to expect antiferromagnetic
order to occur generally in conjunction with a lattice distortion which gives rise to the
relatively complex structure of Mn metal. However, we want to confine ourselves to
the simpler case of chromium. The lattice distortion causes the absolute value of the
reciprocal wave vector Q that comes into play as antiferromagnetic order builds up, to
depart from 2p=a. This was, in fact, observed by Bacon [97] for the first time in neu-
tron scattering experiments and was later confirmed e.g. by Umebayashi et al. [98] who
find 0.95�2p=a�. For practical reasons one can only perform calculations on the undis-
torted lattice, which in the present case has the form of a CsCl lattice. If a paramag-
netic calculation yields band intersections close to the Fermi level, one can gain energy
by introducing antiferromagnetic order because it causes an energy gap of about 0.5 eV
to open up around these crossing points. This energy gain can be enlarged by distorting
the lattice such that the pertinent bands cross each other exactly at the Fermi level. The
necessary change in the Q-vector can be calculated from the distance of the two points
at which the pertinent two bands cross the Fermi level. We omit presenting the para-
magnetic and antiferromagnetic band structures here because they agree essentially
with those obtained by KuÈ bler [81]. What is more, the calculations substantiate the
above experimental value of Q:

Despite the considerable difference in the magnetic moments that one obtains by
using the Xa- or PW-approximation, the respective paramagnetic band structures are
practically identical within a few meV. This is also reflected in the almost perfect agree-
ment of the density of states at the Fermi level EF for the two self-consistent calcula-
tions, the results of which are shown in Figs. 7a, b. This also remains true for the GGA
II density of states. What is distinctly different from the density of states, is a large
discrepancy between the Stoner parameters IStoner obtained from the same set of calcu-
lations based on the Xa- and PW-approximation, respectively, though the pertinent de-
pendences of IStoner on the atomic number Z, as shown in Figs. 8a, b, are very similar.
Another feature of the Stoner parameters is obviously that their variation within the
3d-, 4d-series is noticeably less than that of the density of states. The weak dependence
of IStoner on Z has similar reasons as the small variation of the atomic radii and the
weak change of the interatomic distances in the respective lattices as one moves
through the 3d-, 4d-series. The charge density within the d-shell shows only little varia-
tion as Z becomes larger, and consequently IStoner changes only marginally. Clearly, as
Z goes up, the original s±p type charge density in the valence shell of Ca is sucessively
replaced by d-charge density, which tends to be more localized so that r�r� increases
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within the valence shell regime. If one approximates IStoner by equation (9.4) and uses
the simple Xa-form (4.7) for the exchange±correlation potential, one recognizes that
IStoner / rÿ2=3, explaining the drop of the Stoner parameter with increasing r�r�. On the
other hand, the integral in equation (9.4) contains jwd�EF; r�j4 as a factor which gradu-
ally shifts its maximum weight from the atomic sphere boundary to the center of the
valence shell as Z increases and EF moves to the upper d-band edge where one is deal-
ing with antibonding d-states characterized by a node approximately around the sphere
boundary. The shift outweighs the above-mentioned drop / rÿ2=3. This mechanism has
already been described by Janak [32].

Considering the sensitivity of the Stoner parameter and of the susceptibility to the
form of the exchange±correlation potential, it is surprising that the various PW-based
results we shall be discussing in the following agree well with those obtained earlier by
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Fig. 7. Paramagnetic density of states per atom and spin at the Fermi energy plotted as a function
of the atomic number for the a) 3d-transition metals and b) 4d-transition metals. The Xa- and PW-
results are marked by diamonds and triangles, respectively; the square and the cross have the ana-
logous meaning for Mn in the f.c.c. modification (part a) and Pd in the h.c.p. modification (part b)

Fig. 8. Stoner parameter I � IStoner for the a) 3d-transition metals and b) 4d-transition metals. Sym-
bols used in marking the curves are identical to those in Figs. 7a, b



Janak [32], Gunnarsson [30] and Sandratskii and KuÈ bler [40] though these authors use
slightly different exchange±correlation potentials.

As a consequence of the large difference between the Stoner parameters that relate
to the two different exchange±correlation potentials, the Stoner criterion (9.8) leads to
different predictions for ferromagnetic instability in some prominent cases. In Figs. 9a, b
we show the dependence of IStonerD�EF� on the atomic number for the 3d-transition
metals (Fig. 9a) and 4d-transition metals (Fig. 9b), again using the same symbols as in
Figs. 7a, b. Portions of the curves that are above the dotted line refer to ferromagnetic
instability. Obviously, the Xa-approximation for the parameter value a � 0:716 which
we have been using throughout our calculations, yields ferromagnetic instabilities for
Sc, b.c.c.-Mn, f.c.c.-Pd and Y whereas V and f.c.c.-Mn represent boundary cases. This
also becomes obvious from the pertinent susceptibilities which attain exceedingly large
values. Again, the PW-approximation leads to a correct prediction of ferromagnetic
instability except for b.c.c.-Mn, which, however, does not exactly describe the material
that actually exists. Interestingly, the theory predicts in either case ferromagnetic order
for h.c.p.-Pd when the interatomic distance is chosen nearly identical to that of f.c.c.-Pd.
This is not surprising considering the fact that the Stoner product from a PW-based
calculation is already very close to unity for the f.c.c.-modification. Hence a small in-
crease in the density of states and in the Stoner parameter (in the present case 13%
and 12%, respectively, due to a slightly different environment) leads to ferromagnetic
order. An Xa-based calculation already yields ferromagnetic order for f.c.c.-Pd, and the
density of states at EF increases by 19%, the Stoner parameter by 8% if one switches to
the h.c.p.-structure.

In Fig. 10 we present results on the Stoner enhancement factor S for the 3d-/4d-tran-
sition metals. Negative values refer to ferromagnetic order, and their absolute values
represent a measure of strength. Metals that are close to ferromagnetism are character-
ized by particularly large positive values.

In summarizing the above results, one is led to conclude that any primarily paramag-
netic material may be driven into ferromagnetic order if one manipulates the material
such that the density of states at the Fermi energy increases sufficiently. By gradually
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Fig. 9. Stoner product ID�EF� as a function of the atomic number Z for the a) 3d-transition metals
and b) 4d-transition metals. The symbols characterizing the curves are identical to those used in
Figs. 7a, b



expanding the material one even-
tually runs into a range of the lattice
constant where the overlap of the va-
lence orbitals decreases exponen-
tially. This causes D�EF� to increase
dramatically if one is dealing with an
incompletely filled band. By con-
trast, the Stoner parameter stays
within the same order of magnitude.
The latter is a consequence of the
fact that it is essentially defined by
the electronic density of the atom.
It should be noted, however, that in
the process of expanding the lattice,
one can first run into an antiferro-
magnetic order which does not basi-
cally change the band structure for

the spin-up and spin-down states. Hence, it is plausible that the antiferromagnetic band
structure can serve as a starting point for the build-up of ferromagnetic order just as
well as the original paramagnetic band structure, whereas the reverse is very unlikely to
occur.

As a particularly drastic example that illustrates the validity of the above conclu-
sions, we have forced K metal into an ideal ferromagnetic order by expanding the
lattice beyond a certain threshold. Potassium deposited in a regular array on an insu-
lating crystal well below monolayer coverage may be expected to display the same
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Fig. 10. Stoner enhancement factor
S � c=c0 as a function of the atomic
number Z for the a) 3d-transition metals
and b) 4d-transition metals. Again, the
same symbols as in Figs. 7a, b are used.
An Xa-based calculation for f.c.c.-Mn
yields S � 217:4 which has not been in-
cluded here

Ta b l e 2
Data relevant to the understanding of the ferromagnetic transition of K metal

element K K

structure b.c.c. b.c.c.
lattice constant a (AÊ ) 5.22 10.97
magnetic moments �mB� 0 1.00
D�EF� (states/(atom eV)) 0.41 6.83
IStoner (eV) 0.97 0.46
IStonerD�EF� 0.40 3.20



striking behavior. In Table 2 we compare the relevant data for K bulk metal at its
experimental and a considerably enlarged lattice constant for the exchange±correla-
tion potential suggested by Perdew and Wang [33]. The data relating to the experi-
mental lattice parameter agree well with results obtained previously by Janak [32]
and Vosko et al. [99]. In addition, we obtain a Stoner enhancement factor S of 1.7
which is well within the range of 1.8 to 2.0 reported by Vosko et al. [99] and agrees
with the experimental value of 1.7 that results from de Haas-van Alphen experiments
[100]. The expansion has been chosen such that the spin-up and spin-down bands are
separated by a small gap of 95 meV. The occupied band is still about 0.41 eV wide,
indicating sizable itineracy of the associated states. Obviously, one is dealing here
with perfect ferromagnetic order where each atom carries a magnetic moment of ex-
actly 1mB. The electronic structure can also be stabilized self-consistently for antiferro-
magnetic order, albeit at a slightly higher total energy. In that case, the magnetic
moment per atom (i.e. per b.c.c.-unit cell) is less than 1mB. Surprisingly, the magnetic
moment within the muffin-tin spheres (their size being chosen identical to that of the
unexpanded lattice), turns out to be practically identical to the moment of the ªfer-
romagnetic sphereº, i.e. m � 0:36mB.

In Table 3 we have listed analogous data on the antiferromagnetic 4f-metal Eu
and the ferromagnetic 4f-metal Gd. The agreement with experimental values of the
magnetic moment is relatively satisfactory in view of the sizable error bars of the
experiments. There is much reason to believe that materials containing f-electrons
are just as well tractable within a DF-based band description.
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Ta b l e 3
Data relevant to the understanding of the (anti-)ferromagnetic transition of Eu and Gd

element Eu Gd

structure b.c.c. h.c.p.
lattice constant a, c (AÊ ) 4.61 3.63, 5.78
magnetic moments �mB�
Xa; a � 0:716 7.07 8.21
PW 6.96 7.73
experiment 8.30a� 7.63b�; 7.98c�
theory 7.40d�; 7.52e�
D�EF� (states/(atom eV))
Xa; a � 0:716 36.58 55.23
PW 36.96 57.17
IStoner (eV)
Xa; a � 0:716 0.80 0.39
PW 0.68 0.33
IStonerD�EF�
Xa; a � 0:716 29.26 21.54
PW 25.13 18.87

a� Bozorth and van Vleck [101]
b� Roeland et al. [102]
c� Nigh et al. [103]
d� Sticht and KuÈ bler [104]
e� Harmon and Freeman [105]



13. Conclusions

We have demonstrated that a first-principles theory of ferromagnetic and antiferromag-
netic order which merely exploits the antisymmetry of the N-electron wavefunction, is
feasible. The theory rests crucially on the assumption that the electronic spin represents
a well defined quantum number. Only in this case the antisymmetry of the wavefunc-
tion and ±± as a consequence ±± the phenomenon of exchange is clearly defined as well.
Hence, a treatment of spin order on that basis inevitably implies the neglect of spin±
orbit coupling. Given that theoretical framework, any possible spin order can only be
collinear. A theory that is designed along these lines leads consistently to a set of one-
particle equations with the square moduli of their Ns lowest lying solutions summing up
to the exact spin-resolved densities. Since the SchroÈ dinger-type equations contain a peri-
odic effective potential, the solutions are of necessity itinerant, i.e. Bloch-type, irrespec-
tive of the strength of correlation effects. The existence of localized states that may be
associated with locally fixed magnetic spin moments ±± as implied by the Heisenberg
model and related schemes ±± is hence at variance with fundamental principles. Spin
order as it occurs in single atoms and proves to be interpretable in terms of Hund's
rule, owes its existence in solids essentially to the same mechanism: to generate an
excess spin-up density, one has to increase the number of occupied spin-up states, there-
by piling them up so that the Fermi energy of that subsystem shifts upwards opposite to
the Fermi energy shift in the spin-down system. At the same time the spin-dependent
one-particle potentials respond to the new spin densities by shifting downwards and
upwards, respectively. Whether or not ferromagnetic order occurs, depends on whether
the latter shifts win over the former shifts. Since this crucial mechanism does not re-
quire the atoms to form a fixed array, ferromagnetism is also possible in molten metals
[74, 75] and in amorphous materials.

A particular aspect of AF-order in solids is that it requires a Fermi surface nesting
associated with a wavevector Q � e2p=a, where a is the distance of nearest equivalent
planes in one of the two sublattices, and e denotes the unit vector perpendicular to
these planes. In general one has to expect the total energy of the system to drop even
further below its value for ideal AF-order if one distorts the lattice slightly parallel to e,
thus introducing a charge density wave (CDW) in addition to the SDW caused by the
nesting. It appears, however, that this distortion is quite minute in the majority of mate-
rials and only well studied in detail in the case of AF-chromium [82].

As opposed to ferromagnetic order, the ideal antiferromagnetism is associated with
the property of a system that it can be subdivided into two structurally identical subsys-
tems carrying opposite spin moments. Since the one-particle states are also itenerant in
this case, an occupied spin-up state means that this state gives identical contributions to
the spin-up density everywhere at equivalent lattice sites. This applies, for example, to
AF-ordered Cr and Mn metal2� as well as to AF-ordered single crystals of CoO and
NiO [106]. Regarding the latter, it is therefore obvious that spin order in such systems
cannot be caused by a particular ªsuperexchangeº mechanism which has first been sug-
gested by Kramers [76] and whose existence has seemingly been taken for granted ever
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2� Here, for these two materials, we disregard the small deviations of their true lattices from the
simplified ones we are considering. The structure of Mn metal is known to be more complicated
than (but close to) b.c.c. and the spin order in Cr metal is, as mentioned above, slightly different
from antiferromagnetic.



since. In addition, our considerations in Section 11 suggest that antiferromagnetism is
not necessarily tied to the existence of a lattice, but should even be possible in diatomic
homonuclear molecules as seems to be evidenced by calculations on the Cr2 molecule
[107].

Density functional (DF-)theory has frequently been called into question as regards its
general capability to describe ground state properties reliably on a first-principles basis.
Some of the apparent failures for which DF-theory is blamed may very likely be identi-
fied as misinterpretations of experimental facts. The 4f-levels of Ce metal, for example,
are experimentally found to lie 2 eV below the Fermi level as opposed to DF-theory
which yields the uppermost 4f-bands going across the Fermi level in accordance with
the criterion of Section 8. In actual fact the pertinent photoemission experiments deal
with a transition where one creates a localized 4f-hole rather than a depleted itinerant
state (see Eckardt and Fritsche [108]). Hence, the 2 eV effect is a final state effect and
has nothing to do with the ground state, the electronic structure of which is in any case
experimentally inaccessible.

Other examples of failure concern, for instance, properties of certain transition metal
oxides and undoped high-Tc superconductors where DF-theory wrongly predicts metal-
lic conductivity. Moreover, the theory yields magnetic moments per atom that are
either too small or even zero. This failure of conventional DF-theory might be caused
by a possibly large error in the spin-resolved densities for antiferromagnetic materials.
As a consequence, the build-up of antiferromagnetic order may be suppressed alto-
gether or the spin-density derived gap at the Fermi level is not wide enough to extend
across the entire Brillouin zone. As can be learned from the example of strongly ex-
panded potassium metal, antiferromagnetic order that is associated with a large mo-
ment per atom leads to strong Fermi-surface nesting and in the end to a completely
insulating state.
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