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ABSTRACT

We outline a first-principles approach to superconductivity based on a
generalized density functional theory that has recently been developed by the
present author. Within the generalized density functional framework it can be
shown that the atomic nuclei-electron system of an extended solid in its ground
state is either a metal or an insulator as long as the Born-Oppenheimer (BO)
approximation applies. Any conceivable interaction mechanism of purely electronic
character (including interaction with plasmons, magnons, etc.) can never reduce the
total energy of the system to below its BO value associated with metallic
conductivity or insulating properties. Consequently, a superconducting state whose
total energy must necessarily be below that of the metallic state cannot possibly
oceur within the BO approximation. Hence, in order to bring about superconduct-
ivity, electron—phonon interaction is definitely indispensable. We briefly report a
gcneralized—density«functional-based derivation of the gap equation as being the
general key element of a first-principles theory of superconductivity.

§ 1. INTRODUCTION

Over the past 35 years since the advent of a microscopic theory of superconductiv-
ity there has been mounting evidence that the mechanism governing this extraordinary
behaviour of solids is generically non-relativistic and should hence be describable
within the framework of an (N + N,)-particle Schrodinger equation for the N electrons
of the solid in question and its N, nuclei. This should, of course, apply to high-T;
superconductivity as well. Distinctly different from this rather elementary first-glance
view, the pioneering paper by Bardeen, Cooper and Schrieffer (BCC) (1957) was based
on a second quantization scheme starting with a Hamiltonian in the corresponding
form. A conceptual foundation of this kind was much in the spirit of Frohlich’s
conviction that superconductivity can appropriately be treated only within a field
theoretical approach which he advanced in 1950 (Frohlich, Pelzer and Zienau 1950).
The ensuing work, most prominently that of Eliashberg (1960), and the entire literature
that grew out of these pionecring theoretical studies followed consistently that school
of thought. There has never been a successful off-stream attempt to tackle the
superconductivity problem directly from the more elementary starting point given by
the (N + N ,)-particle Schrodinger equation. The present paper is concerned with such
an attempt. Another density functional approach to superconductivity which is,
however, not entirely based on first principles, has recently been put forward by
Oliveira, Gross and Kohn (1988) and Gross and Kurth (1991).
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In §2 we outline the main features of a generalized density functional theory
(GDFT) the details of which have been given in previous papers by the present author
(Fritsche 1986, 1991). Consequences that occur on leaving the Born-Oppenheimer
(BO) approximation are discussed in §3. The principles that give rise to a gap in the
electronic one-particle spectrum are described in §4. In § 5 we discuss the prospects of
working out further consequences of the theory.

§2. ELEMENTS OF GENERALIZED DENSITY FUNCTIONAL THEORY
In this section we briefly discuss some relevant features of GDFT and refer the
reader for details to previous papers of the present author (Fritsche 1986, 1991). A more
complete report will be published elsewhere (Fritsche 1993).
We first consider a situation where the N, atomic nuclei of the solid under study are
atrest in a regular (periodic) array of positions RY. We use the familiar notation x =(r, s)
for real-space and spin coordinate of an electron. Stationary states

lP,,z‘a",,(xl,xz,...,x,\,)

are solutions to the pertinent Schrodinger equation. If one subjects the system to an
infinitesimally small perturbation, the change in ¥, may be written

¥, ="+ 1.0%

where 7, is a positive, infinitesimally small parameter, and 8%, is normalized to unity.
The change in ¥, gives rise to a change in the spin-resolved one-particle density, that is

6pns(r) = plns(r) - pns(r)9
where the primed density derives from ¥. The change in p55(r,r) is defined
analogously. It can be shown that the following relation holds:
8pS, " ¥)= jl‘ e, v, 1)3p,(1) dr + JA G(r", 1)30,(r) d°r,
where ['¢® and 4%"¥ are real-valued functions and 8o ,(r) is defined by

ida,(n=n,N J(‘I’,’,“S P 8P dix,. . dYxy.

The complex-valued function
G I v =I5, r)—iA I, v, r)
n CILEE n s b n PR

can be uniquely constructed for any eigenstate ¥,. If one writes the exchange—
correlation energy EY) by using the correlated two-particle density (Fritsche 1991), the
variation in E” may be written
SEW =BE ™, +3EL,,
where
SEW =) J‘V(xnc)(r? $)pus(r) dr (1)
and

o (1890, n)
My )=~ i N 23 dir. 5
ch(r’ S) ) Z, j ‘I'" — r,‘ r r ( )
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The definition of 8E®), is completely analogous. For the ground state (n=0), eqn. (1)
turns out to be identical with the respective equation defining the exchange-correlation
potential in conventional density functional theory (DFT).

The crucial point of GDFT consists of the following observation. If one turns off the
electron-electron interaction of the system under consideration and simultaneously
turns on an extra potential P (r, s) that conserves p.d1), the resulting non-interacting

N-electron system may be described in terms of one-particle Kohn—Sham (KS) type of
equations with an effective potential Vii(r,s) given by

VaKr,s)=V 30+ Vidn) + Vi, s), (3)

where

v = | 2 o
¥ —r|

is the Hartree potential associated with p,(r), which is just the sum of the spin-resolved
densities. The potential set up by the nuclei is denoted by V2, (r). The solutions Vi, 1)
to these KS equations form a complete orthonormal set which may be used to construct
a complete orthonormal set of Slater determinants @, in terms of which one can expand
¥, in a configuration interaction (CI) series. This CI expansion has the unique property
that the leading configuration, which we denote by ®,, yields exactly the same one-
particle density p,(r) as y, itself, that is

=N Jld)n(x, Xoro . Xyl d%x, . dixy “@
One may therefore rewrite the CI expansion in the form
lIlﬂ = ¢Il + .171’1’ (5)
where
lf]n:zclnk(pk
k
and

oo Co— 1, for k=n,
n ¢y  otherwise

Because of the latter, @, and ¥, are non-orthogonal. Equation (5) states that any N-
clectron eigenstate can be partitioned into a single Slater determinant and a remainder
that does not contribute to the one-particle density, which means that the cross-terms
between @, and ¥, plus |¥,|? integrate to a zero-density contribution. (In case that
V0 (r) has central or axial symmetry, ¢, may consist of a symmetry-adapted linear
combination of a few determinants which differ in their highest-lying degenerate
orbitals (Cordes and Fritsche (1989).) For the ground state our results are, of course, in
agreement with conventional DFT.

On performing the integration on the right-hand side of eqn. (4), one arrives at

pult)= 2, Waslle,r)l?
(oc;:up)

which is familiar from conventional DFT for the ground state.
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Summarizing the above results we can write the total energy of the system in the
form

E,={(T),+ Jp..(r)VSXI(r)d% + VO + EQ+{(Tom (6)
where
(=3 Y J P~ A0 ™
and

<ﬁ—c>n = <T;:—~c>n - <T>n:

with (T, >, denoting the true kinetic energy of the system. As to eqn. (7) we have
temporarily condensed the quantum numbers A, k into a single index i. Itis possible to
remove the contribution < T, >, in eqn. (6) formally by taking advantage of the above-
mentioned ‘adiabatic switching’ (Harris and Jones 1974). If the electron—electron
interaction term in the original N-electron Hamiltonian is gradually reduced by a
positive factor A with the property 0< 4<1, one has to turn on an additional external
potential (V, (A, 8)), with increasing magnitude to ensure that p,(r) remains
unchanged. The existence of such a potential for the entire range of A constitutes a
fundamental element of DFT but is conventionally assumed without proof. Only
recently has the present author shown (Fritsche 1993) that this potential actually exists
and has the form

%0

ext(ﬂ"’ r S) :(1 - }“) V%?(I’) + VS:B(I‘, S) — 4 Vi('g(/ﬂ"ﬂ r, S)’ (8)
where V(4,r,5) is defined by analogy to eqn. (2). The form (8) of the extra potential
ensures that V(r,s) does not depend on A so that the states ¥, (k, r) and hence @, in
eqn. (5) remain unchanged as A is switched to zero. Since @, gives the exact one-particle
density, it must become identical with the exact wavefunction for =0 which refers to
the interaction-free electron system under study. Hence, only the portion ¥ (4) in
eqn. (5)is affected by the switching and gradually vanishes as 4 tends to zero. Invoking
the Hellmann-Feynman theorem, one can show that E, may eventually be given the
form

(Ns)
EOWWHUES J POV 7+ jp,.s(n[éa"g(r, SR IR
s i, k s
(occup)

where the exchange—correlation energy g per particle is defined as usual except that
the correlation factor f (¢, r) has to be replaced by

1
Fogr,n= j U, ¢, dA
0
For details we refer the reader again to previous articles (Fritsche 1986,1991).

As a result of the adiabatic switching there is a one-to-one correspondence between
the true eigenstates ¥, and @, Hence, any N-electron eigenstate can uniquely be
characterized by an N x N Slater determinant. A particle-hole-type excitation in an
extended solid may thus be mapped onto a transition ®,—®, where @; contains the N
occupied Bloch orbitals characterizing the ground state, and @ differs from &; only in
that one Bloch state does not occur any longer and is replaced by another (formerly
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unoccupied) state. The associated change in the total energy can be calculated by
forming the difference AE=E —E,;, which represents the excitation energy for the
interband transition. As has been shown by the present author (Fritsche 1991), the
result can be given the form

AE=(¢;,—¢&)+ 4y 9
where

4= J(W/ SR =220, ) = Vi, 5) d’r,

with the superscript 0 referring to the ground state. If the transition takes place across
the fundamental gap in semiconductors or insulators, the states ¥ (r) and Y(r) are
sizeably different (in general s type against p type). In that case, A is positive and
typically of the order of the gap energy &,=&,—¢&; which explains the large ‘gap
discrepancies’ in these materials (Fritsche 1991).

In the case of a metal, @; contains the N lowest-lying Bloch states up to an energy &g,
the Fermi energy, above which there is no finite energy gap separating occupied from
unoccupied states. The lowest-lying excited states ¥, are characterized by determi-
nants @ that contain Bloch orbitals with energies slightly above &g in place of orbitals
with energies slightly below & that occur in @, Because of the vanishingly small energy
difference &,—¢; the spatial variations In the orbitals differ accordingly little.
Consequently, 4; and hence the excitation energy are vanishingly small as well. The
states ¥ that are associated with a finite current map onto determinants ¢, containing
Bloch states whose momentum vectors from a non-centrosymmetrical distributionin k
space. Since the packing of Bloch states in k space is quasicontinuous, there is an
associated quasicontinuous set of degenerate states ¥’ for a metal. Any additional
weak interaction introduced in # (connected, for example, with impurities) will cause
the initial state ¥, (carrying current) to decay into a mixture of those degenerate states

' so that the distribution in k space becomes again centrosymmetrical which is
associated with zero current and a maximum of the entropy of the system. This is
obviously the only possible behaviour of a metal close to the ground state, that is there
can be no superconductivity within the present theory based on a frozen nuclear
motion. As to semiconductors and insulators, it is trivially clear that one cannot
establish any departure from the centrosymmetrical k space occupation in the ground
state without going across the gap which only occurs above the field strength of
electrical breakthrough.

Collective excitations such as plasmons, magnons or excitons are distinct from
excited eigenstates ¥, by the property that their associated one-particle densities Pus¥)
are no longer invariant under the lattice translations. Hence, they correspond to states

W(x,,xz,...,xN,n:za,,tP,.(xl,xz,...,xN)exp(-;E,,:)

which solve the respective time-dependent Schrodinger equation. Even when they
occur as virtual excitations the wavefunction has this general form, the associated total
energy for which can be cast as

E=E,+ ‘Zo (E,— Eolay|*

Thus one has E > E, which means that the occurrence of any of these excitations leads
inevitably to an increase in E above the ground state, contrary to what is needed in
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establishing a new superconductivity ground state. The above consideration also
applies to any other kind of electronic mechanism discussed within that context.

§3. NON-ADIABATIC NUCLEAR MOTION
We now relax the assumption of immobile atomic nuclei fixed at their rest positions
RY. Inclusion of the nuclear motion amounts to solving the (N + N )-particle
Schrodinger equation the associated Hamiltonian of which is given by

Hog=H 0+ H AU

with # . denoting the N-electron Hamiltonian for the general nuclear positions R,. The
quantity UY_, represents the Coulombic repulsion energy of the nuclei at their rest
positions RS, and /7 is defined by

Fo=y M (—iwva)+0

AR T
where U, , denotes the difference U, ,— U0, Here U, , refers to the internuclear
Coulombic repulsion energy for the general positions R,. The factor m./M ' denotes
the ratio of the electron mass to nucleus mass.

We confine ourselves to finding the lowest-lying cigenstate of #,,. Quantities
referring to that solution will be labelled by a superscript 0. The BO approximation
(which all electronic structure calculations of solids draw upon) is in the present context
characterized by two assumptions, namely

PRy, Ry, Ry, X1, Xy xy) = Bo(Ry, Ry ooy Ry ) Po(Ry, Ry, Ry Xy, X, , Xy,
(10)

where ¥, denotes the electronic wavefunction as before, and furthermore
FOD, W= o H 5. (11)

The implication of the form chosen for ¥, in eqn. (10) is that the N-electron
wavefunction adjusts adiabatically to the instantaneous nuclear positions R,. On
multiplying the Schrodinger equation associated with J by ¥¥, using eqns. (10) and
(11)and integrating over all electron coordinates, one arrives at a Schrodinger equation
for the nuclear motion:

# DR, R,,...,Ry )= E o®o(R,, Ry, ..., Ry), (12)
where

T =

N

0+ Eq
and
E,=E.(R;,Ry,...,Ry )~ E.(R%LRY, ..., R}

with E,, denoting the total electronic energy for the nuclear positions indicated. If one

expands U, .+E, in the harmonic approximation, that is in powers of the
displacements R,—R? up to second order, eqn. (12) can be solved and yields

~ 1
EnO =5 Z hwb(q)s
24

where w,(q) refers to thg frequency of a phonon associated with wave-vector q and
branch b. The quantity E,, is hence to be interpreted as the total zero-point energy for
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which reason we shall denote it by E dhonon: (Although we are using dimensionless
quantities throughout this paper, we tolerate here the inconsistency of writing the
phonon energies in their natural dimensions just to keep the familiar notation.) The
total energy of the (N + N )-particle system within the BO approximation is therefore
given by

Eﬁ)(t) = EcO(RO’ Rg’ et R(Izln) + Ugn + E;O)honom (13)

where E., is the total electronic energy as obtained from a standard density functional
calculation. The quantity EEQ can be interpreted as the lowest eigenvalue of a modified
Schrodinger equation for the (N + N .)-particle system with the associated Hamiltonian

’% e = ‘%8 + Ugmn + ‘;éz?n'

tot

To go beyond the adiabatic approximation defined by this Hamiltonian, we introduce

‘%;ot = 'yf?o(o + Uc~n’ (14)
where v ¥ 2
~ B Z
0=~ L T 5
a:;l le (‘rv—Ral "v_R;)!) ( )

describes the electron—phonon interaction. Obviously, #,, and the true Hamiltonian
H o differ only in E, which is solely a function of the positions R, and vanishes
quadratically as the nuclear displacements go to zero. Since E,, does not depend on the
clectron coordinates, we may neglect this contribution in discussing the effect of U._.

We make a short digression to elucidate a particular feature of dynamically coupled
quantum systems. We consider two eigenfunctions ¥, and ¥, of #9, where the
superscript 0 indicates that the nuclei are in their rest positions R?. The associated
generalized density functional images @, and &, are assumed to differ only in two
Bloch states with momenta k and k' respectively, where the latter state occurs in @, in
place of where the former appears in @,. The time-dependent Schrodinger equation
connected with # 2 is satisfied by

1
PR, Xy, Xpo 1) = 3 ¢ PX Xa, s xy) exp —(iw,t).
v=0

On forming the square modulus of this equation, approximating ¥, ¥, by &, and ¥,
respectively, and integrating over x, (0 Xy we obtain the density

N I
pns(rs t) = l—/— + 2|6'361!|u:5(k/ ’ r)uﬁx(ka r)l Cos (q r—ot+ (pOI)' (16)

If E, and E, are sufficiently close, we may according to eqn. (9) identify w as the
difference &;,(k’)—¢4(k). The volume of the lattice is denoted by V, @o, refers to the
phase of ¢c,, and the overbar indicates that we have averaged over the lattice unit cell.
(Hence ris only defined with an uncertainty of the cell diameter.) We have, furthermore,
used

wﬁs(k’ r) = uﬁs(k’ f) Cxp (lk . I’)’
where u,k, r) possesses lattice periodicity, and q is defined
q=k—k. (17)

Equation (16) obviously describes a travelling density wave. As soon as one couples the
electron system to the nuclear motion, this density wave is seen by the nuclei via
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electron—phonon interaction. A similar consideration holds for the phonon system if
we were to linearly combine two states &, and &,, which differ by a phonon of
frequency o and wave-vector q. Thus, if this interaction is to give rise to a stationary
state of the entire system, one has to synchronize the variations in the two subsystems
and to make their spatial variations commensurate with respect to each other, which
means that one has to select certain electronic excitations to fit onto a particular
phonon. As to the above example, the two Bloch states have to be chosen such that

ess(K)— i) = han(q), (18)

in order to couple to the respective phonon in a stationary fashion. In forming the
eigenstate ¥ of # |, all pairs which satisfy eqn. (17) and eqn. (18) have to be accounted
for.

§4. OCCURRENCE OF A GAP
The objective of this section is twofold. Firstly, we shall recognize that in non-
adiabatically coupling the electronic system to the nuclear motion the total energy of
the (N + N,)-particle system drops below its BO value. Secondly, as a result of this
process, we shall observe the formation of a gap in the spectrum of the electronic one-
particle energies.
We seek the lowest-lying solution to the (N + N,)-particle Schrodinger equation

%:otip:Emt(P’ (19)
where #, is given by eqns. (14) and (15). To this purpose we expand
Y=Y By¥s (20)
a

where
PR, Ry Ry, X X, o, XY= WXy, X, LxncoPo(R Ry, .. Ry
+<:;<13;(R,,R2,...,RNn)+cquf,(R1,Rz,...,RNn)+-.-] 1)

and

Y 1By =1. (22)
q
If we neglect <f>}1 for v>1 we have
leol® +leql* =1, (23)

where we have dropped the superscript v. Here &, denotes the ground state of the
nuclear motion associated with the sum of the zero-point phonon energies, and <f>g
represents a state which differs from @, in the presence of v additional phonons of
branch b and wave-vector q. The latter two characteristics have been formally
absorbed in §. Since the states &, 433 forma complete orthonormal set of functions in
terms of which the R, dependence of @ can be expanded, eqn. (20) gives a complete
representation of the sought-for solution.

To bring out the relevant physics as clearly as possible, we confine the ensuing
derivation to a simplified form of eqn. (20) where the sum contains one term only and By
is equated to unity. Thus, ¥ is identified with ¥, and we neglect &} for v>1. We
furthermore assume ¢, and ¢, to be real-valued coefficients. If we insert ¥, given by
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eqn. (21), into eqn. (19), multiply by [co®Po+ ca@ﬁ]* from the left and integrate over all
coordinates R,, we obtain

N
(ﬂ)eo + COCQ z Vn(ﬁa rv) COsS (q ) rv)> lIl(](xla Xyyoons xN) = Ee(d)‘llﬁ(xla x23 LR XN)’ (24)

v=1

where o
. 1 N QEp, + DED
(G, r)cos(q 1= -3 Y Z, J ~—9—--q—+--"—-0—d3R1 ...d°Ry,
a=1

acts as an additional external potential ¥,(g, r) seen by the electronic system as a result
of having formed a linear combination of @, and ¢@,. Hence its occurrence is completely
analogous to that of the density wave discussed in the context of eqn. (16). The quantity

E(q) is defined by
E(§=FE— U, —Ey + hwqche (25)

phonon

Equation (24) can be handled on the same generalized density function footing as the
Schrodinger equation that pertains to the adiabatic case. In going through the same
arguments as considered in the previous situation, we arrive at the same one-particle
equation, the only difference being that the effective potential, given by eqn. (3), now has
the form

Vilr,s)=V&n+ VP + Virs) (26)
where

V(r) = Vo (1) + cocq Vald, r)cOs (q - ).

The one-particle equation has to be solved self-consistently for the N electrons as
before which amounts to solving the ‘frozen-phonon problem’ (for example Yin and
Cohen (1980, 1982)). In a linear approximation we may describe the self-consistency-
controlled response of the Hartree and exchange-correlation potential to the presence
of a spatially varying extra potential by a static dielectric function &(§,r) such that
eqn. (26) takes the form

V@Xr, s)=VOUr, s)+ Coca Vi (G, v cos(q 1) (27)
where

Pegn=2""@07@n

is the screened phonon-induced potential and VO, s) refers to the unperturbed

potential in the BO ground state. Given the potential from eqn. (27), we may solve the
one-particle equation along the lines of the nearly free-clectron (NFE) approximation,
the only difference being that one has to use Bloch states pertaining to V{)(r, s) instead
of free-electron states. The presence of an additional periodic potential gives rise to a
gap of width

244=coca V(@) (28)

in the original band structure ¢;((k), and to a departure of the new band energies &(k)
from their original values in the vicinity of the gap. (V3*(6) is defined as an average
taken over the unit cell.) To simplify the notation we shall in the following assume a
single-band situation and complete spin symmetry of the electronic system so that we
may drop the suffixes 7i and s. The new NFE-type states may then be written

W'k 1) =wh(k, 1)+ v (k—a, ), (29)
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where

lu® + ol > =1,

and we have accounted for eqn. (17). Obviously, [¥'(k, r)|? consists of a portion that has
the translational symmetry of the unperturbed lattice, and a remainder

2ugvyl cos(q-r+ ?w)

which fits into the phonon-induced potential and leads to a gain of potential energy if
the phase ¢, is suitably chosen.

From the point of view discussed in the digression in § 3 the function Y(k—gq,r)in
eqn. (29) may be interpreted as the orbital of an excited electronic configuration @
where it occurs in correspondence to where y(k, ¥) appears in the ground-state
configuration @, This means that y(k—q,r)hastobean orbital above g and its energy
is additionally subject to the requirement

e(k—q) —hwg = e(k),

as stated in eqn. (18). The energy on the right-hand side refers to the occupied
counterpart orbital in @, Hence, in calculating the total energy change under
consideration, one can confine the k summation over the new energies ¢'(k) (referring to
occupied states y/'(k, r)) by starting downwards from the Fermi level and cutting off at
an energy hwg below &g

For simplicity we assume a frec-clectron-type dependence of ¢ against k around &g
and introduce the quantities k=k—3gq, E=¢ —¢; and £=q- k. The results of the
standard NFE calculation can then be given the form

l“k|2 _1 €
lUk|2} _E(l i@)

E=—(43+3)",

and

where A4 is defined by eqn. (28). Since the phonon-induced potential leads only to a
deformation of the occupied orbitals (y(k, r)—y'(k, r)) and not to a change in the
occupation in k space, the change AE., in the total electronic energy is to a very good
approximation given by the sum over the differences ¢'(k) — (k) (Fritsche, Noffke and
Eckardt 1987). As mentioned above, only states within a depth of iwg below the Fermi
surface are involved in the summation. If hw, < we may give AE, the form

ho, hewg
AE,o=—N2 j "(A2 482 AT+ NG lim (j (A2+8)12 d€>, (30)

4] 440 0

where N denotes a reduced density of states around &g (States which do not comply
witheqn. (17)and eqn. (18)and the requirement that the component y(k—q, r) of y'(k, r)

must refer to a state above &g are given zero weight in determining Ng.) If 44 <hwg, we
obtain from eqn. (30)
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which describes an energy lowering in the electronic system. On the other hand, we
have an energy increase in the phonon system described by the last term on the right-
hand side of eqn. (25). If we introduce the abbreviations x =cq and
V@) 5
oy == e “A:(XANOV?,”A,
T, %Nl @

the total energy can be written
E=ES0 + howg{x* + 7ax2(1 —x?) In [ogx(1 — xH2]) (32)

where we have used eqns. (13), (23), (25) and (31). We determine the minimum of E,, by
forming its derivative with respect to x and equating it to zero. On the supposition that
x and y4 are small compared with unity, the result may be written

I
x:ocglexp<—f> 33)
/4
which on resubstitution of the original quantities takes the form
1
Aﬁ = 2h(1)6 €xXp ( - N’g “{;é;), (34)
where N
_h@r
9 dho

Equation (34) is, in principle, identical with that obtained by Bardeen et al. (1957)
although these workers use a completely different approach. If we insert the result
stated by eqn. (33) into eqn. (32) and use x« 1, we find that the interaction of the N-
electron system with the particular phonon of frequency wg Jeads to an energy gain of

the form
AEy= A%Ngz!é. (35)

The principal features of the results given by eqns. (34) and (35) persist on extending the
above treatment to the case where all terms on the right-hand side of eqn. (20) are
included, that is when all phonons are accounted for. Details on this extension will be
published clsewhere.

§5. CONCLUSIONS

We have demonstrated that a generalized-density-functional based theory of
superconductivity is possible. As one expects from an approach of this kind, the key
quantities (notably the energy gap) can, in principle, be determined ab initio at the level
of frozen-phonon calculations. An extension to finite temperatures is feasible along the
lines of a previous paper (Fritsche 1986). One obtains equations that are essentially
identical with those familiar from BCS theory. Since the clectronic system forms linear
combinations of states as described by eqn. (29), the associated charge density variation
locks onto the phonon-induced potentials which causes a robust stiffness of the
wavefunction in superconducting systems against external magnetic fields. As a result,
the system will display diamagnetic properties that give rise to the Meissner effect.
Surprisingly, the theory lacks any clement that would reflect the importance of
‘electron pairing’. Clearly, in the ground state all electronic one-particle states that
occur in the generalized density functional images of ¥, are equally occupied for s=
+1 up to gap, but this is not different from the situation of a semiconductor in its
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ground state. Furthermore, it turns out that the occurrence of twice the electronic
charge in the flux quantum is directly connected with the phonon-induced v~
dependent portion of the one-particle states y/'(k, r). Hence, it cannot be regarded as
proving the existence of pairs. As follows from the considerations at the end of §2, the
present theory leaves no room for another mechanism of superconductivity that would
not be tied to the electron-phonon interaction. Since the cffective coupling constant Vg
in our eqn. (34) is connected to the electron-phonon interaction in a way that is
considerably different from BCS theory or from McMillan’s (1968) more detailed
expression for T, it is easy to understand why 4, (and hence T¢) can be sizeably higher
in materials where screening is much less effective than in metals. If ¢ in a high-T;
material were a factor of two lower than, for example, that in Al metal, but the other
quantities defining 44 have approximately the same magnitude, T, would be by a factor
of 100 higher than for Al that is 7.~ 100 K. Since the conductivity of high-T, materials
is essentially confined to layers, that is to dimensionally reduced sections of the bulk,
the magnitude of &) in the relevant regime of q may well be expected to be sizeably
smaller than in the bulk. Finally, there is an aspect that relates to the isotope effect. Ina
homonuclear superconducting material, Vs can be shown to scale as M~ Y4 with the

atomic mass of the metal. Since w, scales as M 12, one recognizes that Vg is
independent of M, and hence one has
T,oc Aqgoc M ™12,

which describes the isotope effect. Ina compound the dependences of (73")? and w4 on
the atomic masses no longer cancel. The dependence of 44 (and hence T) on the atomic
masses is therefore no longer determined by the pre-factor of the exponential in
eqn. (34). For certain materials this may well result in a much smaller M dependence of
T,, as is observed, for example, in the tungsten bronzes and the yttrium-based (1:2:3)
high-T, compounds.
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