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Alternative approach to the optimized effective potential method
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We propose an alternative method of calculating so-called optimized effective pot€@izts by directly
exploiting the property of the total enerdy of an interacting\-electron system to attain a minimum for the
true potential of the associated Kohn-Sham equationg i6 expressed as a functional of the occupied
Kohn-Sham orbitals that solve these equations. The method is based on forming the difference between the
sought-for true potential and some local spin-density reference potential corrected to yield the known large
behavior of the OEP. This difference is expanded in terms of attenuated sinusoidal functions that decay
exponentially beyond the range of orbital localization. By using this exparsSibacomes a function of the
expansion coefficients whose values are determined by searching for the minininTbis is achieved by
employing a variant of a steepest descent method. Due to the flexibility of the method, the exchange-only virial
relation can easily be incorporated by performing the minimization in a suitably modified way. The total
energy results for a set of atortBe-Xe differ only by about 10° Ry from those obtained by other authors
using different techniques. We have also successfully extended our method to the relativistic case. For the
treatment of extended systems we propose a combination of our scheme with an existing approximate OEP
method.[S1050-294®8)02905-9

PACS numbdps): 31.15.Ew

I. INTRODUCTION cludes correlation within a Colle-Salvetti-type approximation
constitutes the most promising method of practically improv-
Any practical calculation within the framework of ing the capabilities of DFT and at the same time removing
density-functional theoryDFT) [1,2] is based on some ap- the vexing problem of spurious self-interaction that is typical
proximate form of the energy functional and the associatedf most non-OEP-based expressions for the exchange-
exchange-correlation potential. The optimized effective po-correlation energy. An application of the original KLI
tential (OEP) method that has originally been put forward by method to extended crystalline systems is due tcet.al.
Sharp and Hortof3] and Talman and Shadwidk] appears [13]. The idea has more recently been taken up again by
to offer the possibility of considerably improving on the Bylander and Kleinmari14]. The computer coding of the
standard of approximation set by the expressions for exHartree-Fock exchange expression is relatively clumsy and
change and correlation that are used in present-day DFT calrore time consuming compared to that of a local density
culations. Talmari5] and Shadwick, Talman, and Norman approximation. Hence, to alleviate the accessibility of this
[6] employed an integral-equation approach in calculatingexpression some approximate exchange forms have been
the optimized potential within the exchange-only approxima-suggested very recentl{5—17. An alternative derivation of
tion. In further pursuing this line of thought Warmg al.[7]  the KLI formalism has been given by Nag¥8]. Galing and
applied a refined numerical mesh and ways of improving thé_evy [19] use a perturbation theoretical approach and have
systematic accuracy. Also Engel and VogBdworked with  also outlined the possibilities of treating extended periodic
a refined numerical mesh and a more accurate asymptotgystemg 20].
form of the potential to examine the properties of some cur- The present paper deals with an alternative method that
rently applied approximate exchange functionals. A rela-aims at the most straightforward calculation of OEP’s. The
tively successful way of employing the OEP model in anmethod has already been proposed and applied in a simpli-
approximate fashion is described by the so-called Kriegerfied version by Rose and Shdr&l] more than 20 years ago.
Li-lafrate (KLI) [9] formalism that avoids the solution of an It exploits the fact that the Kohn-Sha(KS) expression for
integral equation. Most recent work by Grabo and Gfd€§  the total energy of aiN-electron system attains a minimum
rests on the KLI approach but goes beyond the exchangef the KS orbitals are solutions to the KS equations for the
only approximation by including the correlation energy in exact potential. We express this potential by a portion that is
the approximate form suggested by Colle and Salyéi]. based on some local density approximatibBA) and use a
The results prove to be comparable in accuracy with thd=ourier expansion for the remainder so that the total energy
respective configuration interactiof€l) calculations. The becomes a function of the Fourier coefficients. They can be
authors have extended this method to diatomic moleculedetermined by any sufficiently advanced minimization or op-
[12]. It appears that a version of the OEP method that intimization code that determines the minimum of the total
energy. The present calculations were carried out with the
aid of some subroutines of the widely used configuration
*Permanent address: Department of Applied Physics, Nationadhteraction codeiva [22], which is exceedingly efficient and
University of Defense Technology, Changsha 410073, The People’determines the absolute minimum automatically. These sub-
Republic of China. routines are modifications of some earlier minimization
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codeg 23,24. Our results for a chosen set of ato(Be-Xe) 1. . . .
differ only by about 10° Ry from those obtained by using 3 V24 Ve(r,S) | his(1) = €isthis(T). (3
the conventional integral-equation technideg], and they
are definitely more accurate than the KLI results as far aghe effective potential is usually given the form
total energies and the accuracy in satisfying the virial theo-
rem are concerned. The new method of determining opti- Vert(1,5) = Ve 1)+ V(1) +V,(1,S),
mized potentials proves to be relatively flexible. The energy
functional may virtually have any form provided it can be where V,(r,s) denotes the exchange-correlation potential.
expressed in terms of occupied KS orbitals. We have sucwe furthermore have
cessfully extended our method to the relativistic case. More-
over, correlation energy functionals that have currently been - _2 -
used in density-functional calculations can also readily be p(r)= = ps(r)
included. As regards numerical accuracy, various criteria
have been suggest¢d—9,29 that concern errors in satisfy- and
ing certain equations: the virial relation, the so-called
exchange-only virial relation introduced by Ghosh and Parr sz N
[26] and by Levy and Perdey27], and a relation for the s O
eigenvalue of the highest occupied orbital as discussed by .
Krieger et al. [25]. All these relations can readily be incor- The exchange-correlation ener@y. may be cast into the
porated by suitably modifying the expression to be mini-form
mized. As a demonstration, we shall be presenting results on _ .
satisfying the exchange-only virial relation as a subsidiary E..=Ex+E., 5)
condition. ) )
In Sec. Il we briefly summarize the key equations andWith E, being the exchange energy
guantities that define the nonrelativistic Kohn-Sham version 5977 )
of density-functional theory. We furthermore outline the JJ sz (r d3r,d3r
relativistic modification of our approach. In Sec. Ill we |r —r| '
present results obtained for a selected set of at@esXe)

4

and discuss particular aspects. where the exchange pair density in the numerator derives
from a Slater determinant that is formed from tdowest
Il. THEORETICAL METHOD lying orbitals solving Eq.(3). The quantityE. in Eq. (5)

denotes thex average of the correlation energy
A. Basic idea of the new approach
If s=*+1 denotes the spin orientation with respect to E.(\)= E (S P\ )d3r’d3r
some global axis, the Kohn-Sham expression for the ground- ¢ o r _ r| '
state energ¥, of the N-electron system under study can be

written The real-valued factax (ranging from zero to onelescribes
Nq 1 the strength of the electron-electron interaction, éﬁﬁ:'i's)
Eo=2, O, ¢;;(F)( -5 62) Pis(1) (\,r',r) is defined by
s 1=1

pE TN D)= TN 1) = S (F 1) = per (T (1),

where the first term on the right-hand side is the pair density
for coupling strength\ in a modified potential

+§ f Ps(NVerd DA +V+E,, (1)

wherevext(F) is the external potential and, is defined - - A -
Veit(N,1,8) =Vl 1) + Vexd{N\,T,S)

that ensures the conservation of the one-particle density

ps(F) at full coupling strength[In the following we shall

denote the additional potential far=0 by \A/ext(F s), which

with V;(r) denoting the Hartree potential. The spin-resolvedis identical with Vi (r) +V,(r,s).] Colle and Salvett[11]

density is given by have derived an approximate expressionEorthat has the
principal form

1 - -
Ve=3 f p(NVu(r)dr,

NS
ps(F)=§1 G 7 E.=Eps,(Vpo)2V2pe]

and has proven to be very success$fld]. Our calculations
where the sum rungas for the kinetic energyover theN;  are also based on an expression of this type but we use a
lowest lying one-particle states that solve the Kohn-Shansimplified form suggested by Lee, Yang, and Bag] where
equations we go beyond the exchange-only approximation.
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ALTERNATIVE APPROACH

As follows from Eq.(1), Eq constitutes a known func-
tional of the sef{;5(r)} of occupied orbitals, i.e.,

Eo=Eol{#is(N}]

provided that the exact expression Br=Ep;(r),p (r)]
is known. This will be assumed in the following.

If the orbitals are generated in a slightly incorrect poten-

tial Ve, (r)+VL(r.s) by using an approximate form for

Vex((F,s), this amounts to replacinyext(F) in Eq. (1) by a
perturbed potential

Véxt( F, S) = Vex( F) - A\A/ext( F, s),
with Af/ext(F,s) being the difference between the true addi-
tional potentialVe,(r,s) and its approximationV,,(r,s).

We denote theN-electron wave function pertaining to

V..(r,s) by ¥/ and the associated energy By. The latter
may be decomposed

Eo=Eg— 25 J pé(F)A\A/ext(F-S)dsr.

whereEj is just the expressiofl) formed with the perturbed
occupied orbitalsbi’s(F) whose square moduli sum up to give
pl(r). Hence

(WolHIWo)=Eg,

whereH denotes thé-electron Hamiltonian associated with
Vo,(r). Because of

(WolA[Wo)=(Wo|H|Wo)
we have

4
Ef=E,,

(6)
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Vmax

AVex(T,8) =Vex(r,5) =V l1,8)= 2 Bsp,(r) (7)

in terms of an appropriate set of basis functiangr). It
turns out that the set of functions

¢,(r)=sin(k,r)e"rolk ®

combines practical simplicity with relatively fast conver-
gence.(For a Xe atom one needs only 80 functions to obtain
practical convergence, for light atoms one needs consider-
ably fewer, i.e., 2D The quantitiesk, are defined

whereL has been chosen to be approximately the length of
the interval that extends from the site of the nucleus to the
classical turning point of the uppermost occupied orbital. All
the numerical integrations were performed by using the com-
monly chosen set of grid points whose density drops appro-
priately as one moves away from the nucleus. The decay
length ry(k,) is chosen to be identical with that distance
from the nucleus beyond which the wavelengt/R, of the
pertinent basis function is smaller than the distance of con-
secutive grid points. Thereby unphysical oscillations of our
Fourier-type expansion are suppressed in a region where the

chosen approximate form Meﬁ(F,s) is already close to the
exact OEP so that the basis functions may there be allowed
to have exponentially decaying amplitude.

In practice, one starts out by giving the coefficieBts,

some values of plausible magnitude. The poterigl(r)
+VLAr,8)+AV(r,s) in the one-particle equation®) is
fixed then and one can solve these equations to obtaiN the

lowest lying orbitalswis(F) that are used to calculate the
density according to Eq¢2) and(4), the kinetic energy and

E,,E.. One hence obtains
Eo=Eo({B.s})-

The minimum ofE, in the space of the expansion coeffi-

with the equality sign referring to the case where the KScientsB,, can be determined by using any reasonably effi-

equations containVq,(r,s)=V.(r,s)+AV(r,s) instead
of the approximate potentidl, (r,s). Equation(6) states
that Ej attains a minimum and becomes equal to the exa
total energy if the orbitals are generated in the exact K
potential.

In practically determiningAV,,(r,s) we use a modified
form of a local spin-densityLSD) potential as an approxi-
mation to\A/ext(F,s). The modification consists in replacing
the exponential tail typical of all LSD potentials beyond the

cient steepest descent method which automatically changes
the assumed starting values Bfg in an appropriate way.

cfhe present calculations were carried out with the aid of
$ome subroutines of the widely used carfes [22]. These

subroutines are modifications of some earlier minimization
codes[23,24].

B. Extending the OEP method to the relativistic case

We replace the scalar orbitals by four-component spinors

classical turning point of the uppermost occupied orbital, byaccording to

— 1/ —O(1/r) whereO(1/r) denotes terms of higher order
in 1/r. The first term, —1/r, guarantees the correct

asymptotic behavior of the exact KS potential. The expres-

sion O(1/r) is taken from Hartree-Fock theof@], which

2

Gis(N)— G () =,

a=1

o(s)

> f9OmMxY,
S

provides an analytical form for it. It may be expected that thewhere
r dependence of the exact OEP within that range will closely

agree with this asymptotic form. Confining ourselves to
spherical atoms we may expand the difference

> E9m)Pd3r=1
a,S
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TABLE I. Ground-state energy< E,,) of some closed-shell atoms or spherical spin-polarized atoms, in

Ry.
Atoms Hartree-Fock Engel-Voskd Kriegeret al’ Present
Be 29.1460 29.1449 29.1447 29.1449
Ne 257.0942 257.0910 257.0897 257.0910
Mg 399.2292 399.2232 399.2214 399.2234
Ar 1053.6350 1053.6246 1053.6210 1053.6248
Ca 1353.5164 1353.5040 1353.4994 1353.5038
Zn 3555.6962 3555.6690 3555.6614 3555.6679
Kr 5504.1100 5504.0862 5504.0796 5504.0855
Sr 6263.0914 6263.0672 6263.0598 6263.0660
Cd 10930.2662 10930.2292 10930.2168 10930.2272
Xe 14464.2768 14464.2426 14464.2297 14464.2403
Li 14.8656 14.8650 14.8644 14.8650
N 108.8090 108.8068 108.8061 108.8067
Na 323.7180 323.7134 323.7099 323.7131
P 681.4386 681.4300 681.4274 681.4297
K 1198.3298 1198.3184 1198.3142 1198.3173

aSpin-unrestricted Hartree-Fock for non-closed-shell atoms.
®Engel and Voskd8].
°Kriegeret al.[9].

and;}ff) denote four-component unit spinors. The large andbbtained from exchange-only calculatior,&0) on some
small components of/, are labeled by a suffixx=1 and closed-shell and spherical spin-polarized free atoms along

a=2, respectively. with Hartree-Fock results and respective OEP data of Engel
The kinetic energy expression in Efl) has to be re- and Vosko[8]. The latter authors used the conventional
placed by integral-equation method. We have also included total ener-
gies obtained from exchange-only KLI calculatidi®g. Ob-
Tz (O —ica.V+ — )19 dr, viously, our re;ults are in be_tter agreement with those of the
{To 2 fw"( J-ica €o(A=D]v(r) very accurate integral-equation method than the correspond-

(oceup ing KLI data. The difference between our results and those

- . . of Engel and Vosko is virtually zero on the scale of interest
wherea and g are the four fundamental Dirac matrices and : )
for the lighter atoms up to Ar and is about 1 mRy or less up

€, denotes the electron rest energy. The spin-resolved densi- .
ties are given by 0 Xe, where the largest error occurs, i.e., 2.3 mRy. By con-

trast, the KLI method yields sizably less accurate results that
R . differ by more than 10 mRy for the Xe atom. All our data lie
ps(N= 2 X [fn)2. above the corresponding values of Engel and Vosko except
(Oc'éup “ for the case of Mg and Ar, where our results are about 0.2
mRy lower. As we have carefully checked our results in this
The one-particle equations that are obtained by employingase it seems that the integral-equation method in the imple-
the familiar procedure of adiabatically switching off the mentation used by Engel and Vosko cannot in all cases guar-
electron-electron interaction, are analogous to the KS equamtee an accuracy up to the fourth decimal place. Calcula-
tions, and read tions within the relativistic extension of our method compare
in accuracy to our nonrelativistic results. The pertinent re-

{[—caV+eo(B~1)]+Vex(r) + Veu(,8)} (1) sults are presented in Table Il for a few atoms along with
- - Dirac-Fock results obtained by using the well-known code of
=€,(1), Grantet al. [30]. The calculations are based on the nuclear

N e ) ] . point-charge model. The differences between our results and
where Ve (r,s) is a diagonal &4 matrix containing the  the corresponding Dirac-Fock values are nearly the same as
additional external potentiaV/q,(r,s) that guarantees the for the nonrelativistic results if compared to the Hartree-Fock

conservation of the interacting densitiﬁgf) as one per- data in Table I. This lends credence to the conceptual and

forms the switching(For details see Fritschet al. [29].) numerical consistency of our approach also in the relativistic
case.
Ill. RESULTS AND DISCUSSION The exchange energy itself represents another quantity

that is sizably sensitive to the accuracy of the effective po-

The accuracy of the energy of free atoms constitutes théential. The pertinent values are given in Table Il together

most obvious criterion for the competitiveness of our alter-with those obtained from a pure Hartree-Fock calculation
native method. In Table | we have listed the pertinent resultand from the OEP calculations by Wamwgal. [7] and by
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TABLE Il. Relativistic ground-state total energy-E,q), in Ry.

Atoms Dirac-Fock Present Presdiricluding correlation
Ne 257.3839 257.3802 258.1478

Ar 1057.3689 1057.3603 1058.8627

Kr 5577.7690 5577.7450 5581.2463

Xe 14894.3245 14894.2930 14899.7929

Engel and Voskd8]. Obviously, our data agree very well whereE} represents the right-hand side of Ef). The re-
with those exceedingly accurate OEP results. The accuragyits obtained for the total energy by employing this kind of
of the OEP in the exchange-only approximation can verymodified minimization are compiled in Table | where we
sensitively be checked by using the exchange-only viriahave listed a selected set of atoms. The remaining errors in
theorem derived by Levy and Perd¢@7] which states satisfying the virial theorem and Eq&®), (10) are listed in
Table IV. Considering the accuracy of our total energies
(Table |) within the mRy range, the small magnitude of the
error in satisfying Eq.(9) indicates that our procedure
achieves, in fact, what it is designed for. At the same time
where E,; and ps are determined by using the OEP, andthe error in satisfying Eq(10) becomes obviously very
sz(F) is just the exchange portion of the latter. Another Small. This.is'different from 'the.KLI methoq \_Nhere one finds
criterion that is particularly suited for checking the accuracyEd-(10) satisfied exactly which is not surprising as this result
of the potential in the asymptotic region is due to Kriegercan be shown to follow analytically from the particular con-

B | puD)F- TVl PIPr, ©

et al.[25] and consists in the equality struction ofVXC(F ,S). By contrast, in satisfying the virial
theorem as well as the exchange-only virial theorem, (8.
€= E;'F (100  the KLI method yields sizable errors which can be as large as

3.6 Ry for the Xe atom. The eigenvalues obtained for the
for the highest occupied level for either spin direction. Hereli9hest occupied orbitals and the Hartree-Fock one-particle
es and e." denote, respectively, the orbital eigenvalue per_expectatlog' val|l_1|es are :;Stelf n Tablei v anddcor:npS:Eeg to thle
taining to the exchange-only OEP and the Hartree-Fock oneq?réesml)n 'ggv alr(tr%e- T?]C eigenva u(ejs an t” € res&: ts
particle expectation value formed with the correspondinqﬁl ngel and Voskd8]. There is a good overall agreemen

OEP orbital. Our method lends itself to incorporating E3). 'tlh"f::f"l few mRyhbetwele?t tzetlr: datahand ourst. tial for th
in a particularly simple way by minimizing N Fig. l(a)_ we have plotied the exchange potential for the
Xe atom as it results from our exchange-only calculation. It

displays the shell-derived structuré€®umps”) that Wang
Et0t+2 |Exs—EY), et f’i|. dl_scuss in thelr_ OEP papéf] which is based on a
s refined integral-equation approach. The close one-to-one cor-

TABLE lIl. Exchange energy € E,), in Ry.

Atoms Hartree-Fodk Wanget al® Engel-Voské Present

Be 5.3338 5.3317 5.3316 5.3318
Ne 24.2167 24.2098 24.2100 24.2136
Mg 31.9886 31.9758 31.9768 31.9821
Ar 60.3699 60.3486 60.3496 60.3531
Ca 70.4224 70.3968 70.3982 70.4036
Zn 139.2824 139.2352 139.2378 139.2274
Kr 187.7120 187.6615 187.6662 187.6782
Sr 203.9100 203.8459 203.8528 203.8445
Cd 297.8284 297.7525 297.7596 297.7751
Xe 358.1942 358.1182 358.1276 358.1526
Li 3.5624 3.5616 3.5617
N 13.2134 13.2088 13.2082
Na 28.0352 28.0262 28.0295
P 45.2846 45.2684 45.2662
K 65.3562 65.3338 65.3407

aSpin-unrestricted Hartree-Fock for non-closed-shell atoms.
bwanget al. [7].
°Engel and Voskd8].
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TABLE IV. Errors in satisfying the virial theorem and Ed9), 0.0 . .
(10), in mRy. The suffixh stands for “highest occupied level.”
Atoms Eror+ Exin E,—EY —epteft 05 | @) |
Be -0.33 0.0006 —-0.90
Ne —1.88 —0.0006 4.72
Mg —1.81 —0.0013 —1.52 1.0 1
Ar —3.73 —0.0031 0.64
Ca —2.87 0.0033 —-1.22 ;‘9»
Zn —6.04 0.0037 6.25 = 15} 8
Kr -0.89 0.0027 4.01 NG
Sr -0.81 0.0050 -0.75 h
cd -1.09 —0.0008 6.14 2.0 |
Xe 0.26 0.0004 —-0.01
Li(1) —0.20 —0.0005 0.13
Li(]) 0.0001 —-16.35 25 1
N(T) —0.68 0.0001 —-1.02
N(]) —0.0002 —0.56
Na(1) -1.18 —0.0000 -0.69 30 ‘ , ,
Na(l) —0.0000 0.13 7o 5 10 15 20
P(1) —-1.70 0.0005 —3.48 r(a.u.)
=) 0.0001 -2.18
K(1) —-2.37 0.0005 -0.38 0.0 ; ;
K(]) 0.0002 —1.20

-0.5 | (b) 1

respondences of these featu(akso in their absolute valugs
demonstrates even more convincingly the adequacy of the
two methods. This applies as well to the exchange potentials 1.0 ]
for spin up and spin down shown in Figh} for the example

TABLE V. Eigenvalues— ¢, of the highest occupied orbitals g ]
and the Hartree-Fock single-particle expectation valﬂeﬁf, in g
Ry. z.

Hartree-Fock  Engel-Vosk8 Present Present

Atoms (—&m) (—em)  (—en)  (—ehf
Be(2s) 0.6185 0.6184 0.6177 0.6186 ]
Ne(2p) 1.7008 1.7014 1.7042 1.6995
Mg(3s) 0.5061 0.5060 0.5046 0.5061
Ar(3p) 1.1820 1.1816 1.1817 1.1810 ‘ . .
Ca(4s) 0.3911 0.3912 0.3899  0.3911 80, 5 10 15 20
Zn(4s) 0.5850 0.5856 0.5913  0.5851 r(a)
Kr(4p) 1.0484 1.0468 1.0498 1.0458
Sr(5s) 0.3569 0.3572 0.3569 0.3577 FIG. 1. The exchange potentials of Xe and P atoms as examples
Cd(5s) 0.5297 0.5310 05360 0.5299 demonstrating the capability of our method to reproduce the de-
Xe(5p) 0.9146 0.9128 09124 0.9124 ltailed structure_ of the exchange potential that results from a differ-
Li(2s7) 0.3928 0.3926 0.3925 0.3926 ent OEP techniquésee Wgn@t al.[7]). (a) Exchange.poter?thl of
Li(1s)) 4.9374 4.9376 4.9537 4.9373 >_<e, (b) exc_hange p(_)tentlal for,_ respectively, majority spgolid
N(2p1) 11418 11424 11416 1.1426 line) and minority spin(dashed lingof a P atom.
N(2s]) 1.4516 1.4514 1.4509 1.4514 . . . .
Na(3s]) 0.3644 0.3642 03635 03641 ©f the P atom which presents a spherical spin-polarized sys-
Na(2p|) 3.0340 3.0354 3.0334 3.0333 €M L .
P(3p1) 0.7842 0.7832 0.7799 0.7834 _The erX|b_|I|ty of the present meth_od allows the incorpo-
P(3s)) 1.1124 11122 11106 1.1128 ration of_a_w!de class of energy functionals. Its appllc_atlon to
K(4s1) 0.2954 0.2954 02951  0.2954 the rel_at|V|st|cN-eIectr0n problem, the results of which are
K(3pl) 1.9070 1.9068 19053 1.9065 9ivenin Table Il, presents one of the examples that demon-

strates this flexibility. Another example constitutes the inclu-

4Quoted from Wanget al. [7] for closed-shell atoms and from En- sion of approximate correlation energy function@8]. The

gel and Voskd 8] for open-shell atoms.
bEngel and Voskd8].

incorporation of this or similar functionals into the integral-
equation approach to the OEP method poses a serious diffi-
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culty. Grabo and Gross therefore resort to the KLI approach 0.0 . . .
in order to achieve this incorporation of correlatih0].
Notwithstanding the error introduced by using a modified

X . — OEP
expression for the correlation energy compared to the Colle- 05 | KLI _
Salvetti expression employed by Grabo and Gross thereisa | LT——7°

relatively satisfactory agreement between their result& on
and ours, the maximum difference being less than 5%. 1.0 _

In conclusion it may be stated that the accuracy of our
alternative DFT method in calculating OEP’s appears to
compare well with that of the integral-equation method. The
new method is flexible and lends itself to incorporating vari-
ous kinds of energy functionals.

The relative simplicity of the KLI approach and the flex-
ibility of our method in dealing with relativistic modifica-
tions and extensions beyond the exchange-only approxima-
tion suggests a combination of the two methods. Instead of

using a LSD-reference potential and expandh{gext(ﬁ s) in
terms of basis functiong (r) [as given by Eq(7)] we could
just as well use the KLI potential as a reference. Since the
latter already displays the wiggles that are characteristic of

the potential correctiomf/ext(F,s), one might surmise that a r(a.u.)

redefined correctioAVEY (r,s) would vary much more
smoothly, and hence its Fourier-type expansion should con- FIG. 2. The OEP exchange portion: “exact OERpresent

verge much faster. We have checked this property ofvork) vs the result of the KLI approximation for the Xe atom.

AVKH(r,s) for the case of Xe. As shown in Fig. 25/ (r,s)

andV&2r s) display, in fact, a very similar wiggly depen- "

dence, but differ sizably in the amplitude of their oscillations ¥is (r) generated within the KLI scheme are Bloch states in
around an identical smooth dependence(This difference  this case, and it would be convenient to use a full-potential
may be the source of error one observes with the KLllinearized augmented plane waELAPW) representation
method in satisfying the virial theoremConsequently, for the valence states. For an insulating periodic structure the
AV (r,s) still exhibits sharp structures, which, however, SUm(2) for the densities and analogous expressions that oc-

Caneﬁe represented by an expansion as defined bg7ZEdput  cur in the KLI scheme can be reduced to a few contributions

with ¢,(r) now denoting spline functions. In that case thefrom “magic k points” (see Baldereschi31], Chadi and

number of necessary basis functions drops from 80 to 20. Cohen[32]). The core states could still be treated as atomic
In the case of nonspherical atoms one could think of exstates. The remaining portion m‘\/&'(r,s) associated with
panding them could then be expanded according to &g.by using

spline functions so thd, would become a function of these
| max ¥max two sets of expansion coefficients whose values are found by
KU applying the same steepest descent method as in the present
AVGi(1.9)= 2 Z BLsen(NYL(), @ pggé’r. grhe FLAPW meEc)hod allows one to treat small I[r)nol-

ecules as well, as has been shown by Freeman and associates

whereL is shorthand fol, m and Y, (7) denotes spherical [33]-

harmonics. For insulating periodic structures it would be

suggestive to splin VKH (r,s) into two portions which refer

to contributions of the core states and the valence states, ACKNOWLEDGMENT
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