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Alternative approach to the optimized effective potential method

L. Fritsche and Jianmin Yuan*
Institut für Theoretische Physik B der TU Clausthal, D-38678 Clausthal-Zellerfeld, Leibnizstraße 10, Germany

~Received 15 August 1997; revised manuscript received 4 November 1997!

We propose an alternative method of calculating so-called optimized effective potentials~OEP’s! by directly
exploiting the property of the total energyE of an interactingN-electron system to attain a minimum for the
true potential of the associated Kohn-Sham equations ifE is expressed as a functional of the occupied
Kohn-Sham orbitals that solve these equations. The method is based on forming the difference between the
sought-for true potential and some local spin-density reference potential corrected to yield the known larger
behavior of the OEP. This difference is expanded in terms of attenuated sinusoidal functions that decay
exponentially beyond the range of orbital localization. By using this expansionE becomes a function of the
expansion coefficients whose values are determined by searching for the minimum ofE. This is achieved by
employing a variant of a steepest descent method. Due to the flexibility of the method, the exchange-only virial
relation can easily be incorporated by performing the minimization in a suitably modified way. The total
energy results for a set of atoms~Be-Xe! differ only by about 1023 Ry from those obtained by other authors
using different techniques. We have also successfully extended our method to the relativistic case. For the
treatment of extended systems we propose a combination of our scheme with an existing approximate OEP
method.@S1050-2947~98!02905-9#

PACS number~s!: 31.15.Ew
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I. INTRODUCTION

Any practical calculation within the framework o
density-functional theory~DFT! @1,2# is based on some ap
proximate form of the energy functional and the associa
exchange-correlation potential. The optimized effective
tential ~OEP! method that has originally been put forward b
Sharp and Horton@3# and Talman and Shadwick@4# appears
to offer the possibility of considerably improving on th
standard of approximation set by the expressions for
change and correlation that are used in present-day DFT
culations. Talman@5# and Shadwick, Talman, and Norma
@6# employed an integral-equation approach in calculat
the optimized potential within the exchange-only approxim
tion. In further pursuing this line of thought Wanget al. @7#
applied a refined numerical mesh and ways of improving
systematic accuracy. Also Engel and Vosko@8# worked with
a refined numerical mesh and a more accurate asymp
form of the potential to examine the properties of some c
rently applied approximate exchange functionals. A re
tively successful way of employing the OEP model in
approximate fashion is described by the so-called Krieg
Li-Iafrate ~KLI ! @9# formalism that avoids the solution of a
integral equation. Most recent work by Grabo and Gross@10#
rests on the KLI approach but goes beyond the exchan
only approximation by including the correlation energy
the approximate form suggested by Colle and Salvetti@11#.
The results prove to be comparable in accuracy with
respective configuration interaction~CI! calculations. The
authors have extended this method to diatomic molec
@12#. It appears that a version of the OEP method that

*Permanent address: Department of Applied Physics, Natio
University of Defense Technology, Changsha 410073, The Peop
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cludes correlation within a Colle-Salvetti-type approximati
constitutes the most promising method of practically impro
ing the capabilities of DFT and at the same time remov
the vexing problem of spurious self-interaction that is typic
of most non-OEP-based expressions for the exchan
correlation energy. An application of the original KL
method to extended crystalline systems is due to Liet al.
@13#. The idea has more recently been taken up again
Bylander and Kleinman@14#. The computer coding of the
Hartree-Fock exchange expression is relatively clumsy
more time consuming compared to that of a local dens
approximation. Hence, to alleviate the accessibility of t
expression some approximate exchange forms have b
suggested very recently@15–17#. An alternative derivation of
the KLI formalism has been given by Nagy@18#. Görling and
Levy @19# use a perturbation theoretical approach and h
also outlined the possibilities of treating extended perio
systems@20#.

The present paper deals with an alternative method
aims at the most straightforward calculation of OEP’s. T
method has already been proposed and applied in a sim
fied version by Rose and Shore@21# more than 20 years ago
It exploits the fact that the Kohn-Sham~KS! expression for
the total energy of anN-electron system attains a minimum
if the KS orbitals are solutions to the KS equations for t
exact potential. We express this potential by a portion tha
based on some local density approximation~LDA ! and use a
Fourier expansion for the remainder so that the total ene
becomes a function of the Fourier coefficients. They can
determined by any sufficiently advanced minimization or o
timization code that determines the minimum of the to
energy. The present calculations were carried out with
aid of some subroutines of the widely used configurat
interaction codeCIV3 @22#, which is exceedingly efficient and
determines the absolute minimum automatically. These s
routines are modifications of some earlier minimizati
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3426 57L. FRITSCHE AND JIANMIN YUAN
codes@23,24#. Our results for a chosen set of atoms~Be-Xe!
differ only by about 1023 Ry from those obtained by usin
the conventional integral-equation technique@7,8#, and they
are definitely more accurate than the KLI results as far
total energies and the accuracy in satisfying the virial th
rem are concerned. The new method of determining o
mized potentials proves to be relatively flexible. The ene
functional may virtually have any form provided it can b
expressed in terms of occupied KS orbitals. We have s
cessfully extended our method to the relativistic case. Mo
over, correlation energy functionals that have currently b
used in density-functional calculations can also readily
included. As regards numerical accuracy, various crite
have been suggested@7–9,25# that concern errors in satisfy
ing certain equations: the virial relation, the so-call
exchange-only virial relation introduced by Ghosh and P
@26# and by Levy and Perdew@27#, and a relation for the
eigenvalue of the highest occupied orbital as discussed
Krieger et al. @25#. All these relations can readily be inco
porated by suitably modifying the expression to be mi
mized. As a demonstration, we shall be presenting result
satisfying the exchange-only virial relation as a subsidi
condition.

In Sec. II we briefly summarize the key equations a
quantities that define the nonrelativistic Kohn-Sham vers
of density-functional theory. We furthermore outline th
relativistic modification of our approach. In Sec. III w
present results obtained for a selected set of atoms~Be-Xe!
and discuss particular aspects.

II. THEORETICAL METHOD

A. Basic idea of the new approach

If s561 denotes the spin orientation with respect
some global axis, the Kohn-Sham expression for the grou
state energyE0 of theN-electron system under study can
written

E05(
s

(
i 51

Ns E c is* ~rW !S 2
1

2
¹W 2Dc is~rW !

1(
s
E rs~rW !Vext~rW !d3r 1Vc1Ēxc , ~1!

whereVext(rW) is the external potential andVc is defined

Vc5
1

2 E r~rW !VH~rW !d3r ,

with VH(rW) denoting the Hartree potential. The spin-resolv
density is given by

rs~rW !5(
i 51

Ns

uc is~rW !u2, ~2!

where the sum runs~as for the kinetic energy! over theNs
lowest lying one-particle states that solve the Kohn-Sh
equations
s
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F2
1

2
¹W 21Veff~rW,s!Gc is~rW !5e isc is~rW !. ~3!

The effective potential is usually given the form

Veff~rW,s!5Vext~rW !1VH~rW !1Vxc~rW,s!,

where Vxc(rW,s) denotes the exchange-correlation potent
We furthermore have

r~rW !5(
s

rs~rW ! ~4!

and

N5(
s

Ns .

The exchange-correlation energyĒxc may be cast into the
form

Ēxc5Ex1Ēc , ~5!

with Ex being the exchange energy

Ex5
1

2 (
s
E E r̂2xo

~s,s!~rW8,rW !

urW82rWu
d3r 8d3r ,

where the exchange pair density in the numerator der
from a Slater determinant that is formed from theN lowest
lying orbitals solving Eq.~3!. The quantityĒc in Eq. ~5!
denotes thel average of the correlation energy

Ec~l!5
1

2 (
s8,s

E E r̂2
~s8,s!~l,rW8,rW !

urW82rWu
d3r 8d3r .

The real-valued factorl ~ranging from zero to one! describes

the strength of the electron-electron interaction, andr̂2
(s8,s)

(l,rW8,rW) is defined by

r̂2
~s8,s!~l,rW8,rW !5r2

~s8,s!~l,rW8,rW !2 r̂2xo
~s,s!~rW8,rW !2rs8~rW8!rs~rW !,

where the first term on the right-hand side is the pair den
for coupling strengthl in a modified potential

Veff~l,rW,s!5Vext~rW !1V̂ext~l,rW,s!

that ensures the conservation of the one-particle den
rs(rW) at full coupling strength.@In the following we shall
denote the additional potential forl50 by V̂ext(rW,s), which
is identical withVH(rW)1Vxc(rW,s).# Colle and Salvetti@11#

have derived an approximate expression forĒc that has the
principal form

Ēc5Ēc@rs ,~¹W rs!
2,¹W 2rs#

and has proven to be very successful@10#. Our calculations
are also based on an expression of this type but we u
simplified form suggested by Lee, Yang, and Parr@28# where
we go beyond the exchange-only approximation.
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57 3427ALTERNATIVE APPROACH TO THE OPTIMIZED . . .
As follows from Eq. ~1!, E0 constitutes a known func
tional of the set$c is(rW)% of occupied orbitals, i.e.,

E05E0@$c is~rW !%#

provided that the exact expression forĒc5Ēc@r↑(rW),r↓(rW)#
is known. This will be assumed in the following.

If the orbitals are generated in a slightly incorrect pote
tial Vext(rW)1V̂ext8 (rW,s) by using an approximate form fo

V̂ext(rW,s), this amounts to replacingVext(rW) in Eq. ~1! by a
perturbed potential

Vext8 ~rW,s!5Vext~rW !2DV̂ext~rW,s!,

with DV̂ext(rW,s) being the difference between the true ad
tional potential V̂ext(rW,s) and its approximationV̂ext8 (rW,s).
We denote theN-electron wave function pertaining t
Vext8 (rW,s) by C08 and the associated energy byE08 . The latter
may be decomposed

E085E092(
s
E rs8~rW !DV̂ext~rW,s!d3r ,

whereE09 is just the expression~1! formed with the perturbed

occupied orbitalsc is8 (rW) whose square moduli sum up to giv

rs8(rW). Hence

^C08uĤuC08&5E09 ,

whereĤ denotes theN-electron Hamiltonian associated wit
Vext(rW). Because of

^C08uĤuC08&>^C0uĤuC0&

we have

E09>E0 , ~6!

with the equality sign referring to the case where the
equations containV̂ext(rW,s)5V̂ext8 (rW,s)1DV̂ext(rW,s) instead

of the approximate potentialV̂ext8 (rW,s). Equation~6! states
that E09 attains a minimum and becomes equal to the ex
total energy if the orbitals are generated in the exact
potential.

In practically determiningDV̂ext(rW,s) we use a modified
form of a local spin-density~LSD! potential as an approxi
mation to V̂ext(rW,s). The modification consists in replacin
the exponential tail typical of all LSD potentials beyond t
classical turning point of the uppermost occupied orbital,
21/r 2O(1/r ) whereO(1/r ) denotes terms of higher orde
in 1/r . The first term, 21/r , guarantees the correc
asymptotic behavior of the exact KS potential. The expr
sion O(1/r ) is taken from Hartree-Fock theory@9#, which
provides an analytical form for it. It may be expected that
r dependence of the exact OEP within that range will clos
agree with this asymptotic form. Confining ourselves
spherical atoms we may expand the difference
-

-

ct
S

y

-

e
y

DV̂ext~rW,s!5V̂ext~r ,s!2V̂ext8 ~r ,s!5 (
n

nmax

Bnswn~r ! ~7!

in terms of an appropriate set of basis functionswn(r ). It
turns out that the set of functions

wn~r !5sin~knr !e2r /r 0~kn! ~8!

combines practical simplicity with relatively fast conve
gence.~For a Xe atom one needs only 80 functions to obt
practical convergence, for light atoms one needs consi
ably fewer, i.e., 20!. The quantitieskn are defined

kn5n
2p

L
, n51,2, ...

whereL has been chosen to be approximately the length
the interval that extends from the site of the nucleus to
classical turning point of the uppermost occupied orbital.
the numerical integrations were performed by using the co
monly chosen set of grid points whose density drops app
priately as one moves away from the nucleus. The de
length r 0(kn) is chosen to be identical with that distanc
from the nucleus beyond which the wavelength 2p/kn of the
pertinent basis function is smaller than the distance of c
secutive grid points. Thereby unphysical oscillations of o
Fourier-type expansion are suppressed in a region where
chosen approximate form ofVeff(rW,s) is already close to the
exact OEP so that the basis functions may there be allo
to have exponentially decaying amplitude.

In practice, one starts out by giving the coefficientsBns

some values of plausible magnitude. The potentialVext(rW)
1V̂ext8 (rW,s)1DV̂ext(rW,s) in the one-particle equations~3! is
fixed then and one can solve these equations to obtain thN

lowest lying orbitalsc is(rW) that are used to calculate th
density according to Eqs.~2! and~4!, the kinetic energy and
Ēx ,Ēc . One hence obtains

E05E0~$Bns%!.

The minimum ofE0 in the space of the expansion coef
cientsBns can be determined by using any reasonably e
cient steepest descent method which automatically chan
the assumed starting values ofBns in an appropriate way.
The present calculations were carried out with the aid
some subroutines of the widely used codeCIV3 @22#. These
subroutines are modifications of some earlier minimizat
codes@23,24#.

B. Extending the OEP method to the relativistic case

We replace the scalar orbitals by four-component spin
according to

c is~rW !→cW k~rW !5 (
a51

2

(
s

f ka
~s!~rW !xW a

~s! ,

where

(
a,s

E u f ka
~s!~rW !u2d3r 51
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TABLE I. Ground-state energy (2Etot) of some closed-shell atoms or spherical spin-polarized atom
Ry.

Atoms Hartree-Focka Engel-Voskob Krieger et al.c Present

Be 29.1460 29.1449 29.1447 29.1449
Ne 257.0942 257.0910 257.0897 257.0910
Mg 399.2292 399.2232 399.2214 399.2234
Ar 1053.6350 1053.6246 1053.6210 1053.6248
Ca 1353.5164 1353.5040 1353.4994 1353.5038
Zn 3555.6962 3555.6690 3555.6614 3555.6679
Kr 5504.1100 5504.0862 5504.0796 5504.0855
Sr 6263.0914 6263.0672 6263.0598 6263.0660
Cd 10930.2662 10930.2292 10930.2168 10930.2272
Xe 14464.2768 14464.2426 14464.2297 14464.2403
Li 14.8656 14.8650 14.8644 14.8650
N 108.8090 108.8068 108.8061 108.8067
Na 323.7180 323.7134 323.7099 323.7131
P 681.4386 681.4300 681.4274 681.4297
K 1198.3298 1198.3184 1198.3142 1198.3173

aSpin-unrestricted Hartree-Fock for non-closed-shell atoms.
bEngel and Vosko@8#.
cKrieger et al. @9#.
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andxW a
(s) denote four-component unit spinors. The large a

small components ofcW k are labeled by a suffixa51 and
a52, respectively.

The kinetic energy expression in Eq.~1! has to be re-
placed by

^T&05 (
k

~occup!

E cW k
1~rW !@2 icaW •¹W 1e0~b21!#cW k~rW !d3r ,

whereaW andb are the four fundamental Dirac matrices a
e0 denotes the electron rest energy. The spin-resolved de
ties are given by

rs~rW !5 (
k

~occup!

(
a

u f ka
~s!~rW !u2.

The one-particle equations that are obtained by employ
the familiar procedure of adiabatically switching off th
electron-electron interaction, are analogous to the KS eq
tions, and read

$@2caW •¹W 1e0~b21!#1Vext~rW !1V̂ext~rW,s!%cW k~rW !

5ekcW k~rW !,

where V̂ext(rW,s) is a diagonal 434 matrix containing the
additional external potentialV̂ext(rW,s) that guarantees th
conservation of the interacting densitiesrs(rW) as one per-
forms the switching.~For details see Fritscheet al. @29#.!

III. RESULTS AND DISCUSSION

The accuracy of the energy of free atoms constitutes
most obvious criterion for the competitiveness of our alt
native method. In Table I we have listed the pertinent res
d

si-

g

a-

e
-
ts

obtained from exchange-only calculations (Ēc50) on some
closed-shell and spherical spin-polarized free atoms al
with Hartree-Fock results and respective OEP data of En
and Vosko @8#. The latter authors used the convention
integral-equation method. We have also included total en
gies obtained from exchange-only KLI calculations@9#. Ob-
viously, our results are in better agreement with those of
very accurate integral-equation method than the correspo
ing KLI data. The difference between our results and tho
of Engel and Vosko is virtually zero on the scale of intere
for the lighter atoms up to Ar and is about 1 mRy or less
to Xe, where the largest error occurs, i.e., 2.3 mRy. By c
trast, the KLI method yields sizably less accurate results
differ by more than 10 mRy for the Xe atom. All our data l
above the corresponding values of Engel and Vosko exc
for the case of Mg and Ar, where our results are about
mRy lower. As we have carefully checked our results in t
case it seems that the integral-equation method in the im
mentation used by Engel and Vosko cannot in all cases g
antee an accuracy up to the fourth decimal place. Calc
tions within the relativistic extension of our method compa
in accuracy to our nonrelativistic results. The pertinent
sults are presented in Table II for a few atoms along w
Dirac-Fock results obtained by using the well-known code
Grant et al. @30#. The calculations are based on the nucle
point-charge model. The differences between our results
the corresponding Dirac-Fock values are nearly the sam
for the nonrelativistic results if compared to the Hartree-Fo
data in Table I. This lends credence to the conceptual
numerical consistency of our approach also in the relativi
case.

The exchange energy itself represents another qua
that is sizably sensitive to the accuracy of the effective
tential. The pertinent values are given in Table III togeth
with those obtained from a pure Hartree-Fock calculat
and from the OEP calculations by Wanget al. @7# and by
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TABLE II. Relativistic ground-state total energy (2Etot), in Ry.

Atoms Dirac-Fock Present Present~including correlation!

Ne 257.3839 257.3802 258.1478
Ar 1057.3689 1057.3603 1058.8627
Kr 5577.7690 5577.7450 5581.2463
Xe 14894.3245 14894.2930 14899.7929
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Engel and Vosko@8#. Obviously, our data agree very we
with those exceedingly accurate OEP results. The accu
of the OEP in the exchange-only approximation can v
sensitively be checked by using the exchange-only vi
theorem derived by Levy and Perdew@27# which states

Exs52E rs~rW !rW•¹W Vxs~rW !d3r , ~9!

where Exs and rs are determined by using the OEP, a
Vxs(rW) is just the exchange portion of the latter. Anoth
criterion that is particularly suited for checking the accura
of the potential in the asymptotic region is due to Krieg
et al. @25# and consists in the equality

es5es
HF ~10!

for the highest occupied level for either spin direction. He
es and es

HF denote, respectively, the orbital eigenvalue p
taining to the exchange-only OEP and the Hartree-Fock o
particle expectation value formed with the correspond
OEP orbital. Our method lends itself to incorporating Eq.~9!
in a particularly simple way by minimizing

Etot1(
s

uExs2Exs
vr u,
cy
y
l

r
y
r

e
-
e-
g

whereExs
vr represents the right-hand side of Eq.~9!. The re-

sults obtained for the total energy by employing this kind
modified minimization are compiled in Table I where w
have listed a selected set of atoms. The remaining error
satisfying the virial theorem and Eqs.~9!, ~10! are listed in
Table IV. Considering the accuracy of our total energ
~Table I! within the mRy range, the small magnitude of th
error in satisfying Eq.~9! indicates that our procedur
achieves, in fact, what it is designed for. At the same ti
the error in satisfying Eq.~10! becomes obviously very
small. This is different from the KLI method where one find
Eq. ~10! satisfied exactly which is not surprising as this res
can be shown to follow analytically from the particular co

struction of Vxc(rW,s). By contrast, in satisfying the viria
theorem as well as the exchange-only virial theorem, Eq.~9!,
the KLI method yields sizable errors which can be as large
3.6 Ry for the Xe atom. The eigenvalues obtained for
highest occupied orbitals and the Hartree-Fock one-part
expectation values are listed in Table V and compared to
corresponding Hartree-Fock eigenvalues and the OEP re
of Engel and Vosko@8#. There is a good overall agreeme
within a few mRy between their data and ours.

In Fig. 1~a! we have plotted the exchange potential for t
Xe atom as it results from our exchange-only calculation
displays the shell-derived structures~‘‘bumps’’ ! that Wang
et al. discuss in their OEP paper@7# which is based on a
refined integral-equation approach. The close one-to-one
8
6
1
1
6

74
2

45
51
26

5
2

TABLE III. Exchange energy (2Ex), in Ry.

Atoms Hartree-Focka Wanget al.b Engel-Voskoc Present

Be 5.3338 5.3317 5.3316 5.331
Ne 24.2167 24.2098 24.2100 24.213
Mg 31.9886 31.9758 31.9768 31.982
Ar 60.3699 60.3486 60.3496 60.353
Ca 70.4224 70.3968 70.3982 70.403
Zn 139.2824 139.2352 139.2378 139.22
Kr 187.7120 187.6615 187.6662 187.678
Sr 203.9100 203.8459 203.8528 203.84
Cd 297.8284 297.7525 297.7596 297.77
Xe 358.1942 358.1182 358.1276 358.15
Li 3.5624 3.5616 3.5617
N 13.2134 13.2088 13.2082
Na 28.0352 28.0262 28.029
P 45.2846 45.2684 45.266
K 65.3562 65.3338 65.3407

aSpin-unrestricted Hartree-Fock for non-closed-shell atoms.
bWanget al. @7#.
cEngel and Vosko@8#.
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3430 57L. FRITSCHE AND JIANMIN YUAN
respondences of these features~also in their absolute values!
demonstrates even more convincingly the adequacy of
two methods. This applies as well to the exchange poten
for spin up and spin down shown in Fig. 1~b! for the example

TABLE V. Eigenvalues2«nl of the highest occupied orbital
and the Hartree-Fock single-particle expectation values2«nl

HF , in
Ry.

Atoms
Hartree-Focka

(2«nl)
Engel-Voskob

(2«nl)
Present
(2«nl)

Present
(2«nl

HF)

Be(2s) 0.6185 0.6184 0.6177 0.6186
Ne(2p) 1.7008 1.7014 1.7042 1.6995
Mg(3s) 0.5061 0.5060 0.5046 0.5061
Ar(3p) 1.1820 1.1816 1.1817 1.1810
Ca(4s) 0.3911 0.3912 0.3899 0.3911
Zn(4s) 0.5850 0.5856 0.5913 0.5851
Kr(4p) 1.0484 1.0468 1.0498 1.0458
Sr(5s) 0.3569 0.3572 0.3569 0.3577
Cd(5s) 0.5297 0.5310 0.5360 0.5299
Xe(5p) 0.9146 0.9128 0.9124 0.9124
Li(2s↑) 0.3928 0.3926 0.3925 0.3926
Li(1s↓) 4.9374 4.9376 4.9537 4.9373
N(2p↑) 1.1418 1.1424 1.1416 1.1426
N(2s↓) 1.4516 1.4514 1.4509 1.4514
Na(3s↑) 0.3644 0.3642 0.3635 0.3641
Na(2p↓) 3.0340 3.0354 3.0334 3.0333
P(3p↑) 0.7842 0.7832 0.7799 0.7834
P(3s↓) 1.1124 1.1122 1.1106 1.1128
K(4s↑) 0.2954 0.2954 0.2951 0.2954
K(3p↓) 1.9070 1.9068 1.9053 1.9065

aQuoted from Wanget al. @7# for closed-shell atoms and from En
gel and Vosko@8# for open-shell atoms.
bEngel and Vosko@8#.

TABLE IV. Errors in satisfying the virial theorem and Eqs.~9!,
~10!, in mRy. The suffixh stands for ‘‘highest occupied level.’’

Atoms Etot1Ekin Ex2Ex
vr 2«h1«h

HF

Be 20.33 0.0006 20.90
Ne 21.88 20.0006 4.72
Mg 21.81 20.0013 21.52
Ar 23.73 20.0031 0.64
Ca 22.87 0.0033 21.22
Zn 26.04 0.0037 6.25
Kr 20.89 0.0027 4.01
Sr 20.81 0.0050 20.75
Cd 21.09 20.0008 6.14
Xe 0.26 0.0004 20.01
Li ~↑! 20.20 20.0005 0.13
Li ~↓! 0.0001 216.35
N~↑! 20.68 0.0001 21.02
N~↓! 20.0002 20.56
Na~↑! 21.18 20.0000 20.69
Na~↓! 20.0000 0.13
P~↑! 21.70 0.0005 23.48
P~↓! 0.0001 22.18
K~↑! 22.37 0.0005 20.38
K~↓! 0.0002 21.20
e
ls

of the P atom which presents a spherical spin-polarized
tem.

The flexibility of the present method allows the incorp
ration of a wide class of energy functionals. Its application
the relativisticN-electron problem, the results of which a
given in Table II, presents one of the examples that dem
strates this flexibility. Another example constitutes the inc
sion of approximate correlation energy functionals@28#. The
incorporation of this or similar functionals into the integra
equation approach to the OEP method poses a serious

FIG. 1. The exchange potentials of Xe and P atoms as exam
demonstrating the capability of our method to reproduce the
tailed structure of the exchange potential that results from a dif
ent OEP technique~see Wanget al. @7#!. ~a! Exchange potential of
Xe, ~b! exchange potential for, respectively, majority spin~solid
line! and minority spin~dashed line! of a P atom.
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culty. Grabo and Gross therefore resort to the KLI appro
in order to achieve this incorporation of correlation@10#.
Notwithstanding the error introduced by using a modifi
expression for the correlation energy compared to the Co
Salvetti expression employed by Grabo and Gross there
relatively satisfactory agreement between their results onEc
and ours, the maximum difference being less than 5%.

In conclusion it may be stated that the accuracy of
alternative DFT method in calculating OEP’s appears
compare well with that of the integral-equation method. T
new method is flexible and lends itself to incorporating va
ous kinds of energy functionals.

The relative simplicity of the KLI approach and the fle
ibility of our method in dealing with relativistic modifica
tions and extensions beyond the exchange-only approx
tion suggests a combination of the two methods. Instea
using a LSD-reference potential and expandingDV̂ext(rW,s) in
terms of basis functionswn(rW) @as given by Eq.~7!# we could
just as well use the KLI potential as a reference. Since
latter already displays the wiggles that are characteristic
the potential correctionDV̂ext(rW,s), one might surmise that a
redefined correctionDV̂ext

KLI (rW,s) would vary much more
smoothly, and hence its Fourier-type expansion should c
verge much faster. We have checked this property
DV̂ext

KLI (rW,s) for the case of Xe. As shown in Fig. 2,V̂ext
KLI (rW,s)

andV̂ext
exact(rW,s) display, in fact, a very similar wiggly depen

dence, but differ sizably in the amplitude of their oscillatio
around an identical smoothr dependence.~This difference
may be the source of error one observes with the K
method in satisfying the virial theorem.! Consequently,
DV̂ext

KLI (rW,s) still exhibits sharp structures, which, howeve
can be represented by an expansion as defined by Eq.~7!, but
with wn(rW) now denoting spline functions. In that case t
number of necessary basis functions drops from 80 to 2

In the case of nonspherical atoms one could think of
panding

DV̂ext
KLI ~rW,s!5(

L

l max

(
n

nmax

BLnsw ln~r !YL~rŴ !, ~11!

whereL is shorthand forl , m and YL(rŴ) denotes spherica
harmonics. For insulating periodic structures it would
suggestive to splitDV̂ext

KLI (rW,s) into two portions which refer
to contributions of the core states and the valence sta
respectively. The contribution of the latter could be e

panded in terms of plane waves exp@iGW •rW# whereGW denotes
vectors of the associated reciprocal lattice. The orbi
ut
h

e-
a

r
o
e
-

a-
of

e
of

n-
f

I

-

s,
-

ls

c is
KLI (rW) generated within the KLI scheme are Bloch states

this case, and it would be convenient to use a full-poten
linearized augmented plane wave~FLAPW! representation
for the valence states. For an insulating periodic structure
sum ~2! for the densities and analogous expressions that
cur in the KLI scheme can be reduced to a few contributio

from ‘‘magic kW points’’ ~see Baldereschi@31#, Chadi and
Cohen@32#!. The core states could still be treated as atom
states. The remaining portion ofDV̂ext

KLI (rW,s) associated with
them could then be expanded according to Eq.~7! by using
spline functions so thatE0 would become a function of thes
two sets of expansion coefficients whose values are found
applying the same steepest descent method as in the pr
paper. The FLAPW method allows one to treat small m
ecules as well, as has been shown by Freeman and asso
@33#.
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FIG. 2. The OEP exchange portion: ‘‘exact OEP’’~present
work! vs the result of the KLI approximation for the Xe atom.
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@18# Á. Nagy, Phys. Rev. A55, 3465~1997!.
@19# A. Görling and M. Levy, Phys. Rev. A50, 196 ~1994!.
.

@20# A. Görling, Phys. Rev. B53, 7024~1996!.
@21# J. H. Rose, Jr. and H. B. Shore, Solid State Commun.17, 327

~1975!.
@22# A. Hibbert, Comput. Phys. Commun.9, 141 ~1975!.
@23# M. J. D. Powell, Comput. J.~UK! 7, 155 ~1964!.
@24# S. A. Lill, Comput. J.~UK! 13, 111 ~1970!.
@25# J. B. Krieger, Y. Li, and G. J. Iafrate, Phys. Lett. A148, 470

~1990!; J. B. Kriegeret al., in Density Functional Theory, ed-
ited by E. K. U. Gross and R. M. Dreizler~Plenum Press, New
York, 1995!, p. 191.

@26# S. K. Ghosh and R. G. Parr, J. Chem. Phys.82, 3307~1985!.
@27# M. Levy and J. P. Perdew, Phys. Rev. A32, 2010~1985!.
@28# C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B37, 785~1988!.
@29# L. Fritsche, C. Kroner, and T. Reinert, J. Phys. B25, 4287

~1992!.
@30# I. P. Grant, B. J. McKenzie, P. H. Norrington, D. F. Mayer

and N. C. Pyper, Comput. Phys. Commun.21, 207 ~1980!.
@31# A. Baldereschi, Phys. Rev. B7, 5212~1973!.
@32# J. Chadi and M. L. Cohen, Phys. Rev. B8, 5747~1973!.
@33# E. Wimmer, H. Krakauer, M. Weinert, and A. J. Freema

Phys. Rev. B24, 864 ~1981!.


