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Abstract. A characteristic feature of the Full lotential Linearized ltugmented Plane Wave (FLAPW)-
method consists in the spatial subdivision of the cha.rge density analogous to that of the one-particle
wavefunctionsi 'd. e. into a portion that is expanded in terms of spherical harmonics X- inside the muffin-
tin spheres and into a plane wave expansion of the interstitial charge density. To obtain the Hartree
potential inside the spheres one is hence forced to solve a boundary value problem at the sphere surface. In
addition, in all non-equivalent spheres each (1, rn)-component of the charge density is mapped onto 300-400
radial grid points. To ensure an accelerated convergence of the calculation, the pertinent schemes require
this rather la,rge data set to be stored and mixed within 3-6 iteration steps. We show and illustrate for the
example of a spin-polarized Ni film with and without an oxygen overlayer and for bulk Si that this data
set can be compressed by at least two orders of magnitude if one partitions the charge density in a difierent
way so that the relevant portion determining the interatomic bonding can be Fourier expanded throughout
the lattice cell. One thereby arrives at a modified FLAPW-scheme that combines favorable features of the
original method with virtues of the pseudopotential method which consist in the simple construction of
the Hartree potential and the efficient way of achieving self-consistency. These advantages can be exploited
to the fullest by using Fast Fourier Tlansform. Moreover, forces that atoms experience in off-equilibrium
positions attain a particularly simple form in terms of the charge density expansion coefficients.

PACS. 71.20.-b Electron density of states and band structure of crystalline solids - 71.22.+i Electronic
structure of liquid metals and semiconductors and their alloys - 75.70.-i Magnetic films and multilayers

1 Introduction

The most successfirl method of calculating electronic
ground state properties of solids on a first principles basis
consists in solving the associated Kohn-Sham (KS) equa-
tions 11] upon which the original lü-electron Schrödinger
equation can be rigorously mapped. This is achieved by
gradually reducing the electron-electron interaction and
simultaneously turning on an additional external poten-
tial that finally attains the form

%*r(t, s) : V11(r) * V*.(r, s) (1)

when the electron-electron interaction has been switched
off completely with the constraint that the charge density
is retained. (See e.9. l2-4].) The tunction V11(r) denotes
the Hartree potential

latter reflects a fundamental conceptual difference from
the self-energy expression in the quasi-particle equations
that can alternatively be used to describe the solid under
study, however, with a definitely different meaning of the
respective quantities l5-7].

In a non-relativistic or scalar-relativistic N-electron
theory, the total electronic charge density p(r) can be sub-
divided into spin-resolved densities p"(r) so that

ano

A r - \ - A r* : 
4^"' (4)

where s : *1 refers to the spin orientations. It can be
shownthat l/,"(r, s) canbe constructedfor anyl/-electron
eigenstate [8] without resorting to functional derivatives
whose conformity with -A/-representability requirements is
questionable. (See e.9. l9]). Ferromagnetic materials are
distinct by the property that

(3 )

(2)

and l/*.(r, s) represents the exchange correlation poten-
tial which is rigorously local and energy-independent. The

f  ^ ( - t \

V n ( r ) :  1  t Y *  
I , ' d 3 r l
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By construction, the densities p"(r) ofthe interacting sys-
tem are exactly given by
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(5)

still remain approximate solutions to equation (6): inside
the spheres Ty'a" (r) is represented by a linear combination of
partial waves whose pertinent radial components depend
on the angular momentum only, but it would depend on
the magnetic quantum number as well if it were to repre-
sent a partial wave of the exact solution.

Achieving self-consistency in systems with large unit
cells poses quite often a technical difficulty that can seri-
ously limit the applicability of the method. The missing
row-type adsorbate/substrate systems Op(2 x l)/Cu(110)
and Op(2 x 1)/Ni(110) that have previously been stud-
ied by our group 119] constitute instructive examples of
this kind. In the case of the ferromagnetically ordered
Op(2 x 1)/Ni(110) system a standard FlAPW-calculation
took more than 200 iterations to establish self-consistencv.
One of the sources of this shortcoming may be seen in the
procedure commonly applied in mixing the information
of the charge density p"(r) obtained in consecutive itera-
tion steps. Inside the spheres this information consists of
the set of density values for grid points that are used in
numerically integrating the radial part of the one-particle
equations. This is a very large set of several thousands of
elements per atom that are mixed in a particular way with
the respective elements of the preceding iterations or -

in the simplest case - only with those of the immediately
preceding step.

A typical phenomenon that critically influences
the speed of convergence in open structures like
adsorbate/substrate systems is the oscillatory bulk-
surface charge transfer. These oscillations give rise to oscil-
lations of the Hartree-potential which, in turn, drives the
changes of the charge density. In the conventional scheme
one mixes the grid point data on the charge density ir-
respective of the resulting effect on the Hartree Poten-
tial. In a Fourier expansion of the charge density (with
an appropriate cut-off momentum K^u-) a charge trans-
fer between atomic layers is reflected in a corresponding
change of some Fourier components whose wavelengths
are comparable to the average distance between regions
of charge exchange. Since the Fourier expansion of V11(r)

is given by the same coefficients p6 divided by E, a mix-
ing of the p6's from consecutive iteration steps (or from
a set of steps) _causes changes of the associated "Hartree-

coefficients" Yrf that are weighted by ;! so that relatively
local fluctuations of p"(r) can hardly efiect Vs(r) or they
are completely suppressed because of the cut-off imposed
on the expansion.

The practical virtues of this alternative way of han-
dling charge density data are obvious from pseudopoten-
tial calculations on comparable or identical systems which
tend to converge considerably faster. The benefits of us-
ing a plane wave expansion throughout the unit cell are to
some extent balanced by the requirement of appropriately
pseudizing the original all-electron potential and using a
considerably larger set of plane waves than is typical of an
equivalent FlAPW-calculation. It is the objective of the
present study to show that one can exploit the striking
advantage of expanding p"(r) in terms of non-augmented
i.e. true plane waves even when the band states are

(l/")
S -  r  ,  ,  r r 2

P" ( r )  :  )  1 ! t , " 1 t15 .
L

The one-particle states satisfy the KS-equations (in Har-
tree units)

lHl.' i" (r) : ei"'Ib i" (r) (6)

where,

I
u : -*v'+ %,t(r) * V"*t(r, s) (7)

z

and I/"*1(r) denotes the "external potential" set-up by the
atomic nuclei of the solid. In some cases it may contain
additional terms that relate to electrostatic fields applied
from outside the solid. In a scalar-relativistic approxi-
mation the Hamiltonian lH is slightly modified (see e.9.
Fritsche et aL l\0])

There is an important feature of the KS-scheme that
is only little emphasized in the literature: since Fl de-
pends on the one-particle states oeo equations (1) to (5),
the KS-scheme requires high quality solutions to Eq. (6)
even when one is only interested in good quality one-
particle energies e;". As to the practical calculations ofthe
functions th"t), the FulI Potential Linearized {ugmented
Plane Wave (FLAPW) method has emerged as one of the
most accurate schemes. It was originally advanced by An-
dersen 111] and by Koelling and Arbman [12]. Relevant
technical details were later worked out by Freeman and
associates [13,14] who applied the method to solid slabs
with and without overlayers. (See e.9. 115]). Related ver-
sions for the treatment of bulk materials were developed
by Jansen and Freeman 116], Mattheiss and Hamann [17]
and by Schwarz [18].

The method builds on Slater's original APW-concept
which exploits the fact that the functionsTy'e"(r) resemble
hybridized atomic orbitals within appropriately chosen,
non-overlapping spheres ( "mufrn-tin-spheres", henceforth
referred to as region I) and that they should behave nearly-
free-electron-like within the flat potential interstitial re-
gion (referred to as II). The spheres around the pertinent
atomic centers are usually chosen as large as possible so
that they touch each other. If the aspherical variations of
the potential inside the spheres are averaged out, the solu-
tions to equation (6) can be separated into a radial and an
angular dependent portion which define partial waves of
certain angular momentum. Linear combinations of them
can then be used to match onto individual plane waves.
The augmented plane waves thus constructed form a set of
basis functions in terms of which Ty';"(r) is expanded. Min-
imization of the pertinent expectation value of Fl yields
the expansion coefrcients.

In the full potential version of the APW-method one
forms this expectation value of lH with the true lattice
potential given by %,t(") * %*t(r, s). It should be noted,
however, that the resulting one-particle functions ry'a"(r)



generated within the FLAPW-scheme. We want to em-
phasize that our scheme is not aimed at changing the
FlAPW-representation of the indiaidual states ,ry'a"(r)

within the spheres, as distinct from various suggestions
repeatedly discussed in the literature.

In Section 2 we outline how one can subdivide the
valence charge density such that one portion, /"(r),can
be kept frozen throughout the iterations and only
the Fourier-expandable remainder, plw(r), undergoes
changes from iteration step to iteration step. Sections 3,
4 5 deal with the associated electrostatic potentials in the
two regions (I and II) and with the exchange-correlation
potential. Applications are summarily discussed in Section
6. In Section 7 we particularly address results on ultra-
thin ferromagnetic Ni-fiIms with and without an oxygen
adlayer. Finally, in Section 8 we compare our band struc-
ture of silicon for some special points of the first Brillouin
zo\e to that of a standard FlAPW-calculation based on
the Viennese code "Wien 95" f181.

2 Subdivision of the charge density

We consider the fundamental volume V of a periodic lat-
tice that may be subdivided into unit cells of volume J-l.
For simplicity we assume the unit cell to contain one atom
only. Moreover, we confi.ne ourselves to paramagnetic sys-
tems which are uniquely characterized by the pertinent
total charge density p(r). In the following p(r) is meant
to include the contribution of the nucleus so that

Hence, if we expand

lK-"*l
p(r) : D p^"n^''

K
t<+o

(e)

where K denotes vectors ofthe reciprocal lattice, the term
pertaining to K : 0 may be left out. The associated elec-
trostatic potential is then given by
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p(r) in terms of spherical harmonics, Yr,(i), with respect
to the center of the aton.
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I Pt)a" : o
J A

( 8 )

We have abbreviated the two indices I and m into tr, and
i denotes the angle-dependent part of r. Each of the func-
tions p1,(r) is now substituted by a Gaussian

P'r?) :  a;sbt '2 (13)

where the parameters a1 audbl carr easily be determined
such that pi(r) smoothly runs in,"o pa(r) at the sphere
surface. Hence, the function

( l) p',,(r)Yr.(f) if r is in region I
t /  \  |  7 ' " '

P  \ r ) :  (  + -

t 
),* PxeiK* if r is in region II 

(14)

represents a portion of the total charge density whose
plane wave expansion may be expected, and proves to be,
relatively fast convergent. However, if one were to use this
definition of p'(r) at each iteration step, the remaining
charge densities inside the spheres would change similarly
to the original one, and one could not avoid mixing grid
point data contrary to our intention. We therefore use the
definitions (13), (14) for p'(r) only after the fi.rst iteration
step and introduce a difference charge density, pr(r), by
setting

l r ( " )  : nG) -p t ! ) (15)

where p1(r) is the total charge density obtained within
that step, and we now keep Ft(r) frozen in the ensuing
calculations. In certain cases where one wants to achieve
higher accuracy) it might be necessary to replace p1(r)
once in a while by a relaxed, analogously constructed
charge density p"(r) after the z-iteration step. By con-
struction p1(r) vanishes smoothly at the sphere surface
and remains zero outside. Hence, if one defines for anv
further iteration steo

p(r)  :  \or(r)Yr.( i )
L

iK - " * i
.PW/* \  -  \ -  ^P_Woi I { . ry  \ - t  -  

. /_  
y t<  "

K

( \2)

if r is in region I
if r is in region II (16)

D \ r r  ( P E ) - i ' r ! )
p ' " " ( r )  : 1  

f  p x e t K '
l . K

where

lr(-"* |
%r(r) : I 7^"n^''

KK+0

V x :  a n *  '

(10) where pK is obtained as before by summing over the
APW-contributions and p(r) denotes the total charge den-
sity obtained in that step, pPw(r) is a smooth function
everywhere and can be expanded in a relatively fast con-
verging Fourier series

( 1 1 )
(1 7\

As is evident from this simple interconnection between [1
and p6, a Fourier expansion offers a considerable practical
advantage. On the other hand, it is clear that p(r) varies so
strongly within the atomic spheres that the convergence of
expansion (9) is impractically slow. We therefore replace
p(r) inside the spheres by a considerably smoother func-
tion the choice of which is relatively obvious: We expand

The way we have constructed pPw(") bears a strong
resemblance to the concept of pseudo-charge density as
has been proposed by Weinert [20] and has become a cru-
cial element of the original FLAPW method. Both types
of pseudo-charge densities guarantee optimal convergence
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in Fourier space and smoothness at the sphere boundary.
However, within our scheme the total charge density is
given by

p \ r ) :  Ä ( " )  +pPw( r )

and is hence completely determined by pPw(r) at each
iteration step as p1(r) is kept frozen. This is distinctly
different from Weinert's construction of p(r) where a sim-
ilar subdivision is used but neither of the charge densities
on the right-hand side is kept fixed and therefore each
term contributes to the changes of the total charge den-
sity as'one runs through the iterations. Since our method
connects the changes of p(r) uniquely to those of pPw(r),
any procedure used to accelerate convergence now involves
only the associated Fourier coefficients.

3 Electrostatic potential in the interstitial
region

Except for a small truncation error in equation (17) which
is kept 6elow a practical threshold of accuracy by choos-
ing lK-.*l suficiently large, pPw(r) is identical with the
true charge density p(r) in region II. The electrostatic
potential, V"t(r), in this region depends, however, on the
sphere charge density t1(r)+pPw(r) as well. By definition

ft(r) contains a large monopole portion, fto("), and mul-
tipole components for I > 0. The latter contributions to
lz"1(r) will be shown to be negligibly small. The monopole
component arises from the centro-symmetric electronic
charge density, l?L(r), contained in l1s(r) and from the
nuclear charge density -26(r). We denote the charge in
the sphere, associated with p1s(r) by Qro,, which is given
by

} r cn : - z+  [  p i ] , ( r ) a3 r
Jar

and describes the charge not eontained in the Fourier ex-
pandable portion pPw(r). The spatial variation of V.1(r)
in region II remains to an adjustable degree of accuracy
unaffected by replacing lto(r), for example, with a Gaus-
sian

pi"-?) : Q1o.s-( i )" I (t/; ^)t (18)

where ) is defined by requiring

rR" - r

+" I p!r".(r)r2 d, : Qr".(L - l)
Jo

with .Rso5 denoting the sphere radius. A Gaussian offers
the advantage of fastest convergence in Fourier space. The
relative charge error, ?) can be adjusted to practical accu-
racy requirements and was chosen to be of the order 10 3.

In the following we shall ignore the finiteness of this error.
Hence the charge density
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where

yields zero charge when integrated over the entire unit
cell so that the electrostatic potential in region II can be
expressed as

lK-"*l
r r l l i  r  \ - '  i K ' rv : - l r l  :  )  v x e " - '

ZJ

K
K+0

(20)

(21)
^PW , ^'Ion

Y*:+"ff

The_qrrantities pflw and prl"' denote Fourier coefficients
of p'* (r) and pi,,(r), respectively.

We temporarily consider the plane wave expansion of
pPw(") in II being continued into the spherical region and
expanded according to equation (12) with the radial com-
ponents denoted bv pl* (r).We may express the aspher-
ical components of p1(r) for I > 0 as

p'r(*): lpr"(r) - piy(")l Yr.(i) . (22)

Their contribution to Izjl(r) is negligibly small for the
following reason. If one replaces the bracketed term on
the right-hand side by a first order Taylor polynomial
referenced to the sphere radius, this function of r van-
ishes identically due to our requirement that p/rr(r) be a
smooth continuation of pPr{ (r) inside the sphere. As one
moves away from the sphere surface towards the center
non-linear terms of the Taylor expansion become sizable,
but the weight rt*2 it the definition of the multipole mo-
ment q1 of p1@), uiz.

r,?"-r

sL: |  
- 

lpr"(")-pi l(")] rt*2dr
J O

decreases correspondingly so that the integral yields al-
ways zero on the scale of interest, which has routinely
been checked in our calculations. As the accuracy of the
original FLAPW-method is tightly connected to the accu-
racy with which one recovers the true multipole moments
by using appropriate pseudo-charge densities, the above
result states that our method ensures comparable accu-
racy.

We could have defined l1(r) alternatively by equat-
ing this function only to the spherical difference charge
density, 'i.e. to pu,(r) in equation (22) for I : 0. Ac-
cording to equation (16) the entire aspherical variation
of the total charse density inside the sphere is then ab-
sorbed into pPw('r) which results in a süwer convergence
ofthe Fourier expansion (17). Quite often, this constitutes
only a minor drawback and is compensated by simplifica-
tions in other places. The multipole components of the
charge density are quantitatively contained then in the
plane wave expansion of pPw(r), in complete analogy to
the pseudopotential method which requires, however, con-
siderably more plane waves. The latter is a consequence of
the fact that pseudization ofthe original potential leads to
a smoothing ofthe radial dependence ofthe charge densitypl"Y(r) : pPw(r) * pi.,(r) (1e)
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that is much less effective than our procedure of forming
p"-(") by subtracting ftr(r) for I : 0.

In practically determining the Fourier coefficients pflw
we use a Fast Fourier Transform (FFT) algorithm which
requires a three-dimensional lattice of grid points within
the unit cell. The number of these points is determined bv
lK-r*l '

4 Electrostatic potential within the spherical
region and force'i

Since p1 (r)- pi".G) possesses a zero monopole component,
vanishes smoothly at the sphere surface and remains zero
in the interstitial region, the real-space integration for the
potential

yJ,(r) : I nG') Pl"*('') osr,
Jv  l r '  -  r l

(23)

may be confined to the J21-portions of V. If one casts
y#("), given by equation (20), as a Poisson integral

y"1t(*) : I 
P'* ('') + P'r"^('') orr,

Jv  l r '  -  r l

%r(r) : tzj(r) + tz"ll(r)

one recognizes that in region II I/"1(r) is identical with
y#("), i,.e. will the true electrostatic potential, and it
becomes also identical with the true electrostatic potential
in region f because of

ll'(") - pi."(")l + laPw(') +pi".(')] : pe)

which follows from our definition (16). It should be em-
phasized that in determining 7"r(r) according to equa-
tion (24) one does not have to solve a boundary value
problem at the sphere surface, different from the stan-
dard FLAPW-method [14]. Furthermore, in applying the
FLAPW-method one customarily expands lz"1(r) in the
form

( DVr(r)V"(i) if r is in region I
r r  /  \  t  f .v"r(r.) : 

i t V11siK.r if r is in region II. 125)
( K

If we use our subdivision (24) we may cast V1,(r) as

V1(r) :v i@) +vi ' ( , )

In the FLAPW-form of the Hamiltonian matrix that de-
fines the general eigenvalue problem to be solved in order
to obtain the band structure, 7"1(r) is mapped onto matrix
elements

where the two terms on the right refer to integrals that
are taken over the respective regions. The second term has
the form

t rrlY K ' K (27)

where I/.1(r) : y#(r) may be expressed by expansion
(20). The contribution 7r!,^ is calculated by using the
augmentations of the respective plane waves and by em-
ploying the angular momentum decomposition of I/.1(r). It
is possible, however, to avoid the subdivision (26) of Vpi,1s
by exploiting the following properties of the APW,s and
%r(t). As distinct from Slater's original idea, each plane
wave in the FLAPW-method is augmented by matching it
sm,oothly onto a partial wave expansion inside the sphere.
Hence the plane wave is still well approximated by the
partial wave expansion within a certain shell below the
sphere surface. Aspherical variations of I/.1(r) associated
with V1(r) for I > 0 are usually large only within that
shell and rapidly decay farther into the sphere. On the
other hand, these aspherical components of 7"1(r) are also
well approximated by the plane wave expansion in equa-
tion (25) if one extends its range of validity into that shell
region. To a rather good approximation one can there-
fore determine V11,6 by forming an integral such as in
equation (27) but with J7 substituted for All. One has to
observe, however, that the spherical component of V"1(r),
i,.e. Vs(r), yields a contribution to V11,1q that can only be
calculated by using the augmentations of the plane waves
and forming an integra_l,of the type Vr!,^. This would, of
course, also contain yd'(t), as is evident from equation
(24). But since this contribution occurs automatically in
the second integral of equation (26) when taken over the
entire cell, one must confine the spherical component of
%r(r) ln V{.,*to Vj(r) only.

Ifone uses the alternative definition ofll(r) by equat-
ing this function to ps(r) in equation (22) tor I : 0, it
turns out that the forces acting on the atoms in the unit
cell can be expressed in a particularly simple form. One
obtains

Fo:  - !z r { " , ' * * '
K

where Fo denotes the force on the a-th atom having the
position Ro in the unit cell. The derivation of this eoua-
tion will be published elsewhere.

5 The exchange-correlation potential

We have used the exchange-correlation potential sug-
gested by Barth and Hedin [21] throughout our calcula-
tions to alleviate a comparison with earlier calculations.
An implementation of more advanced versions including
gradient corrections does, of course, not pose any diffi-
culty. In any case, 7*"(r) in terms of its Fourier expansion

V..^(r \  :  I  o,  -  111- '1oi l ( ' r' ^ r  \ - /  z J  
" ^ " \ - - ) "  t

K

:  
I  n,,%r(r)et(x-x') '"d[3r

and forms

(24)

v11,y - v].,*+v]1,^ (26)
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can be obtained from pPw(r) by calculating I/".(r) in J7
grid point by grid point and subsequently performing a
Fast Fourier Transform. This expansion holds for the in-
terstitial region. Within the spheres one forms 7*.(r) from
p(r) according to equation (16) and expands

V. . ( r ) : I r * . ( t , r )Y2 f t )
L

6 Applications -

To demonstrate the functioning of our new FLAPW-ver-
sion we have first carried out calculations on fcc-bulk cop-
per and ferromagnetically ordered fcc-nickel metal and ob-
tained complete agreement with the respective standard
FLAPW-results. In assessing the accuracy of our results
we have compared the respective band structures, total
and angular momentum decomposed densities of states,
effective orbital occupation numbers and magnetic mo-
ments per atom. The agreement proved to be within the
range of numerical errors that are typical of high qual-
ity band structure methods. We have extended then our
calculations to unsupported 3-layer (100)-fi1ms of Cu and
Ni metal with and without p(1 x 1) oxygen overlayers. To
this purpose, we have modified our computer code by us-
ing the concept of repeated slabs. Thereby one gains the
advantage that the vacuum region between the slabs can
be treated as an extension ofthe interstitial region so that
one avoids solving an extra boundary value problem at the
planes confining the slab towards the vacuum. The latter is
a typical feature of the FlAPW-single-slab-method. Fer-
romagnetically ordered Op(1 x 1)-Ni(100) fiIms represent
particularly critical systems with a rather fragile stabil-
ity of convergence. This will be the subject of Section 7.
We have, furthermore, tested our ne.w method by calcu-
lating the electronic structure of the alkali halides, the
solid rare gases and the prototype semiconductors GaAs
and Si. Results on the latter material will shortly be dis-
cussed in Section 8. In Table 1 we have listed the various
bulk and slab-materials, respectively, that have success-
fully been studied by using our new scheme.

7 The Op(l x 1) - Ni(100) system

Among the ferromagnetic elemental metals Ni plays an ex-
ceptional role because of its large density of states (DOS)
in the minority spin system at the Fermi level. This is also
reflected in its very delicate behavior in establishing self-
consistency, notably in slab calculations where the pres-
ence of surfaces gives rise to bulk-surface charge transfer
oscillations as alreadv mentioned earlier. Oxygen in con-
tact with Ni undergoes strong covalent bonding which con-
flicts with the persistence of ferromagnetic order. Hence, a
slab-calculation on a Ni-film with and without an oxygen
overlayer constitutes a particular sensitive test case for
our new scheme. We have chosen a Ni(100)-rather than
a Ni(1ll)-film because of the simpler symmetry and for
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Table 1. List of materials that have been treated within the
modified FLAPW-scheme.

Material Structure Spin order

Ni ferromagn.
Cu paramagn.
Ne fcc - bulk paramagn.

paramagn
paramagn

Ar
Kr
Si diamond paramagn

GaAs zincblende
NaCI
NaF fcc-based paramagn.
KCI unit cell
LiF
Cu 1-layer (100) tilm paramagn.
Cu 3-layer (100) film
Ni 1-layer (100) film
Ni 3-layer (100) film ferromagn.
Ni 6-laver (100) film

Cu 3-layer (100) film of Cu paramagn.
with Op(1 x 1)

Ni 3-layer (100) film of Ni ferromagn.
w i th  Op( lx  1 )

Table 2. Average number of valence electrons in the interstl-
tial region and inside the muffin-tin-spheres for a Ni(100)-fi1m
with an O-adlayer for'4 different distances do-xi. The corre-

sponding data for bulk Ni, for the uncovered 6-layer Ni-film
(this work) and for a 7-layer Ni-fi1m (Wimmer et aI. 125]) are

also eiven.

pi(:) Ni(2) Ni(1) interstitial region

9.20 0.80 bulk

9.21 9.21 9.03 ca. 4.95 7-layer fi1m

9.19 9.23 9.04 5.01 6-layer fi lm

Ni(3) 5i(z) Ni(l) O interstitial region do-Ni

9.08 9.26 9.32 3.94 4.39 1.7 a.u

9.04 9.28 9.26 4.21 4.22 1.8 a.u

9.08 9.23 9.24 4.33 4. l l  1 .9 a.u

9.06 9.26 9.19 4.77 3.71 2.2 a.u

reasons of comparability with an already existing calcu-
lation by Godby et aI. 122,231 on the Op(1 x 1)-Ni(100)
system. However, ferromagnetic spin order was not taken
into account by these authors.

As indicated by the results of Godby et aI. 122,23], an
Op(1 x 1) overlayer on Ni(100) can actually not be formed
in reality because of the considerable interatomic repulsion
between the oxygen atoms. At sufficiently low coverage
one only observes an initial formation of a p(2 x 2) array
of oxygen which transforms into c(2 x 2) array. Beyond
half coverage the system starts forming NiO IZ ]. Notwith-
standing the actual instability of the Op(1 x 1)/Ni(100)
system it can well serve as a particularly sensitive testing
ground for our ne.w scheme. We have first performed a self-
consistent calculation on a 6-layer unreconstructed Ni fiIm
without an overlayer. In using a repeated slab method, one
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Table 3- Angular momentum decomposed charges in the muffin-tin spheres. The data refer to the same calculations as Table 2.

s-charge p-charge d-charge

Ni(3) Ni(2) Ni(1) ryi(:) 1gg(z) 111i(t) 11i(r) yi(z) Nlfri

0.42

0.45 0.45 0.43

0.47 0.47 0.44

0.45

0.43 0.43 0.29

0.46 0.46 0.30

8.3

8.29 8.28 8.29

8.22 8.25 8.27

bulk

7-layer

6-layer
Ni(3) 1gi(z) p1(r) O X1i(a) x1i(z) pi(i) O pi(:) Nfu
0.43 0.45 0.42

0.43 
-0.45 

0.40

0.43 0.46 0.40

0.43 0.46 0.39

0.54 2.5t  8.34 8.35 8.23 0.01
0.51 2.72 8.31 8.34 8.2L 0.01
0.51 2.80 8.34

0.44 3.10 8.33

t .7r.42 0.28 0.42

1.48 0.28 0.41

1.51 0.28 0.42

1.63 0.27 0.42

8.31 8.22 0.01

8.35 8.28 0.01

1 .8

1 .9

2 .2

does not gain an advantage by confining the slab to an
odd number of atomic layers, different from the standard
FLAPW-single slab method. The results provide an inter-
esting comparison with a 7-layer single slab calculation of
Wimmer et al. 125]. We have repeated then the calculation
for a 3-layer Ni-film with a p(l x 1) oxygen overlayer on top
and chosen the internuclear O-Ni distance, d6 x1i, to be
I.7, \.8, 1.9 and 2.2 BoIv radii, respectively. The lateral
array of the oxygens was assumed to be pseudomorphic
with respect to the substrate.

In Tables 2 and 3 we have compiled all data of interest
for the four values of d6 11i, the smallest one being the
experimental equilibrium distance for a c(2 x 2) overlayer
(Demuth et al. 126)).In comparing respectively the, 6- and
7- layer film of Ni with an oxygen covered Ni-film of three
layers we are counting the Ni-layers in consecutive order
from the top. Obviously, there is practically no difference
in the valence charges of the first three layers between
our 6-layer and the 7-layer fiim of Wimmer et al. l2S]. As
compared to the bulk, a Ni-atom in the Ni(2)-layer sees
an unmodified environment of nearest neighbors. Not sur-
prisingly, its charge is hardly changed. The top-layer Ni(1)
contains slightly less charge, and this remains true also for
Ni(3) adjacent to the vacuum in the oxygen covered film of
3 Ni-layers. Hence, the bonding effect of the oxygen film is
exceedingly short-range. This loss of charge is mainly con-
nected to a reduction of p-charge and can in tight-binding
parlance be related to a reduction of nearest neighbors at
the surface. As a result, the number of hopping-integrals is
reduced which causes the width of the d-type structures
in the local density of states (LDOS) to shrink. On the
other hand, the width of lhis strucLure can alternatively be
traced back to the occurrence of p-d-hybridization within
the Ni-sphere. Hence a loss of p-charge goes hand in hand
with a narowing of the d-derived structure in the LDOS.
As can be seen from Table 3, the s-, p- and d-charges of
the 6-layer and 7-layer film for corresponding layers agree
quite well. There is only a minor difference in that our
d-charges vary slightly across the layers whereas the re-
spective charges in the study of Wimmer et al. l2bl are
practical)y constant.

As can be seen from Table 3, the s- and p-component of
the valence charge density in the oxygen layer increases as

one moves this layer away. At the same time the p-charge
density of the adjacent Ni-layer decreases. Moreover, the
interstitial charge density drops as the oxygen charge in-
creases (not listed).

7.1 Magnetic moments

In Table 4 we have compiled spin resolved and angular
momentum decomposed occupation numbers (per muffin-
tin-sphere) that result from the occupied valence bands.
The difference between these occupation numbers for spin-
up and spin-down, multiplied by the Bohr magneton, gives
the associated magnetic moment which we have also listed.
Expectedly, the d-components give by far the largest con-
tribution to the total moment. The s- and p-components
are only minute and give rise to a negative contribution.
Since the pertinent partial waves are not completely lo-
calized within the muffin-tin-spheres (as opposed to the
d-waves), one observes a negative magnetization in the
interstitial region. The Ni(3)-layer of the 6-layer film ex-
hibits a magnetic moment of 0.59p.n which is again in very
good agreement with the moment in bulk Ni, a'iz.0.58pls,
as obtained by using the same calculational method. The
corresponding values for layers given by Wimmer et al. l2bl
are by some 10 2 p,s larger. Differences of this magnitude
reflect quantum size effects and occur typically with films
of only few atomic layers if one increases the thickness by
one or two layers (e.9. Weimeü et aI. 119])

Experiments indicate a small surface-enhancement of
the magnetic moment by about 5To which is in agreement
with the trends common to such calculations on thin films.
The short-range effect of the oxygen bonding is also re-
flected in the minute change of the magnetic moment of
the Ni(3)-layer on the other side of the film, ,i.e. Lhe vac-
uum side. Only at an oxygen distance of 1.7 a.u. the mo-
ment of this layer drops slightly to 0.56p,p , otherwise it is
practically identical to the value without oxygen coverage.
By contrast, the moment of the Ni(2)-layer is noticeably
smaller with an oxygen layer on top compared to the situ-
ation without coverage. Even at an oxygen distance of 1.8
a.u. the moment is at 0.48p6 and hence still depressed.
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Table 4. Angula,r momentum decomposed occupation numbers rflJ, ^orn"ots pr, total magnetic moments;r, total andspin-

resolved valence charges Q per atom (muffin-tin-sphere) and in the interstitial region.

Op(1 x 1)/Ni(100), 3-layer Ni substrate, do-Ni: 1.7a.u.

Ni(3) Ni(2) 11i(r) interstitial regionU

f i n l n [ n ! , [ n ! , [ n !
0.22 0.22 0.22 0.22 0.21 0.2r 0.71, 0.71,

0.0 0.0 0.0 0.0

0. t4 0.15 0.20 0.2L 0.27 0.27 1.25 7.26
-0.01 -0.01 0.0 -0.01

4.45 3.89 4.39 3.96 4.16 4.07 0.005 0.005

0.56 0.43 0.09 0.0

S

lls

p
- 

ltp

d

IId

n!n[

1.96 1.97

3.94
-0.01

2.21

4.39
-0.03

Q , I I I  4 . 8 2  4 . 2 6

a e.08
p, 0.56

7.84 4.42 4.70 4.6r

9.26 9.32

0.42 0.09

2 . t8

N 6-layer-film

51i(r) N 2) Ni(3) interstitial reeion

"; nl nj nl nl ni
0.219 0.221 0.235 0.238 0.235 0.238

ni nf

-0.002 -0.003 -0.003

0.145 0.155 0.223 0.236 0.223 0.237
l-rp
d

-0.01 -0.013 -0.014
4.47 3.804.46 3.82 4.43 3.83

0.64 0.60 0.61

Q ,I / I 4.83 4.20
a 9.04
tL 0.63

4.97 4.32
9.23
0.586

4.89 4.
9 .19
0.592

30 L.24 L.27
2.5L

-0.03

Ni 7-laver-film (Wimmer eL al. l25l)
ly'i(t) Ni\r) .A,ri(") interstitial region

n| n[ nl ni ni ni ni ni
s 0.21 0.22 0.22 0.23 0.22 0.23

l is -0.01 -0.01 -0.01
p 0.14 0.15 0.21 0.22 O.2L 0.22
trp -0.01 -0.01 -0.01

d 4.50 3.79 4.46 3.82 4.46 3.83
tid 0.7L 0.64 0.63

Q ,I I I 4.85 4.16 4.89 4.27 4.8e 4.28 1.18 7.23
a 9.04 9.20 9.27 2.41
u 0.70 0.62 0.61 -0.05

ni
_ J

n t q  n n

;;;; 
0 00 

;;;;
-o 02 i:ä3 o 60 1 R q

; , ; ;  e 20

Table 5. Number of iteration steps for various calculations

System Number of iterations

O/Ni(100), Nisubstrate of 3 layers, do-wr : 1.7 a.u.

Ni(100)-film of 6 layers (this work)

Ni(100)-film of 7 layers (Wimmer et aI. l25l )

Ni fcc-bulk (this work)

50

30

DU

1,4



Not surprisingly, the Ni(1)-Iayer exhibits a drastical de-
pendence of its magnetic moment on the oxygen distance
do-lqi. At a distance of 1.7 a.u. one observes only a re-
mainder of 0.091,t,p, that is, the moment has practically
disappeared. By increasing the distance in steps of only
0.1 a.u. the moment raises to 0.3ps and 0.38p6, respec-
tively. At a distance of 2.2 at it has become as large as
0.6ltta which exceeds even the value of the clean surface
layer.

7.2 Local density of states

Distinctly different from the individual states in multi-
layer films whose decay length quite often extends over
several layers if they are surface states, chemical bonding,
as reflected in the charge density changes of the perti-
nent atoms, is a short-range phenomenon. This has al-
ready been pointed out earlier at various places. The local
density of states (LDOS) provides another tool for dis-
cussing features of interatomic bonding. This is illustrated
in Figures 1a-d where we show the spin-resolved LDOS of
the Op(1 x 1)/Ni(100) system with a,b,c and d referring
to the oxygen layer and the top, second and third Ni-
Iayer, respectively. We have chosen to present the results
for an O-Iayer distance of 1.7 a.u. which appears to be
the most plausible distance as already explained earlier.
The Ni(3)-Iayer is facing the vacuum, as before. Its LDOS
is practically identical to that of the corresponding irli(1)-
Iayer in an uncovered Ni 6-layer film. One recognizes the
sizable difference in the occupation for spin-up and spin-
down states. (The Fermi-level is indicated by a vertical
dotted line.) The adjacent Ni(2)-layer shows hardly any
change as to these principal features of the LDOS. The
Ni(1).-layer, however, which is directly involved in the O-
Ni bonding displays striking differences in its LDOS, the
most obvious feature being that the very close one-to-one
correspondence of the structures in the spin-up and spin-
down LDOS is reduced to a mere similarity and that there
now additioral structures in the energy regime ranging
from -8 eV to -4 eV which are oxygen induced. The lat-
ter follows from inspection of Figure 1a which refers to
the oxygen layer.

It is also evident from this figure that there are Ni-
induced structures in the LDOS of oxygen which extend
from -4 eV to *2 eV. This mutual interchange of char-
acteristic structures is indicative of chemical bonding and
provides a measure of estimate for the strength of the
bonding. As one increases do-ni, the widths of the O-
derived and Niderived structures shrink and the ampli-
tudes of the induced portions drop. At the same time
the Ni(1)-layer starts building up the spin-up/spin-down
asymmetry.

7.3 Synopsis of the results

The details of the O-Ni interaction studied with our
Op(1 x 1)/Ni(100)-system reflect obviously general fea-
tures of the O-Ni-bonding, in particular its effect on
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the ferromagnetic order in the nearest-neighbor Ni-atom.
There is every reason to expect this effect to occur as well
with the Op(2 x 2)/Ni(111) system. Since we have found
with our system that one loses at the peak of the effect
an equivalent of 1.5 bulk magnetic moments per oxygen
atom, it is likely that the effect is much larger in the case of
Op(2 x 2)-overlayers where one has foui surface Ni-atoms
per O-adatom. Elmers and Gradmann [27] find, in fact, in
their experiments on the Op(2 x 2)/Ni(l1l)-system, that
oxygen reduces the magnetic moment of this system by
an equivalent of four bulk moments per oxygen adatom
which strongly supports our conclusion.

7.4 Convergence of the new method

As discussed in Section 1, the primary goal of our
FLAPW-version was to speed up its convergence. We have
again chosen ferromagnetically ordered Ni metal and a
multilayer Ni-film with and without an O-overlayer to
demonstrate what can be gained by using our scheme.
Because of the exceptionally high density of states in the
minority spin system, calculations on those films are no-
torious for their fragile stability of convergence. In Table
5 we have listed for various systems the number of itera-
tion steps that were necessary to achieve self-consistency
within a threshold energy of - 0.1 mev for a selected
nurnber of particularly sensitive bands at special points of
the Brillouin zone. Our result for the 6-layer Ni-film lends
itself to a comparison with calculations by Wimmer ef ol.
l25l on the 7-layer Ni-fiIm. As distinct from our calcula-
tions that are based on a simple scheme of mixing data
only of consecutive steps, these authors used an Anderson
algorithm to speed up the convergence. For this reason
the ratio of 30 uersus 50 iterations lends credence to our
claim that the modified FLAPW-version offers consider-
able practical advantages.

I Band structure of silicon

We have compared our results to those obtained by using
the WIEN 95-code [18] based on the standard FLAPW-
method. We limit ourselves to comparing the respective
band structures at three symmetry points f, X and tr. The
results are compiled in Table 6 where we have also listed
band corrections that are due to aspherical variations of
the self-consistent potential inside the spheres. If we de-
note this deviation of the true potential from its spherical
average by V""pr...(r), we can partition the Hamiltonian

lH :  H*Vä"p r , . , . ( r )

where FJ refers to the portion containing the spherically
averaged potential in region I, but the true potential in
region II. We can expand the sought-for eigenstates of Fl
in terms of the eigenstates Ty'1(r) of lH. The asphericity-
corrections A.1 - Ae,(k) of the band energies €) are

C.P. Beulshausen and L. Flitsche: Viable improvement of the FLAPW method
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0 ,0
-10  -8 - 6 - 1 - 2  0

E n e r g y / e V

0
-10  -8 - 6 - 4  - 2  0

Energy . /eV

t0  -8  -6  - t ,  - 2  0
EnergY , /eV

I

0
- 1 0 - 6 - 6 - 1 - 2  0  2  I

E n e r g y / e V

Table 6. Si band energies at special points of the Brillouin zone
obtained from our scalar-relativistic tr'LAPW-calculations (coI-
umn "a") and the respective scala,r-relativistic data obtained
by using the "Wien 95" code (column "b"). The experimentai
results are identical to those quoted by Cohen and Chelikowsky

[28]. We have separately listed the non-muffin-tin corrections
("asph.pot.") that are contained in the results of a and b. All
energies are given in eV.

k asph. pot. a b Exp.

r -0.052 -12.02 -7r.976 -12.4 + 0.4 ft
-0.23 0.0 0.0 fzs,

x -0.076 -7.82 -7.83 Xt
-0.088 -2.86 -2.86 -2.9 X+

L -0.075 -9.63 -9.64 -9.3 + 0.4
-0.044 -6.98 -7.0I -6.4 + 0.4
-0.154 -1.20 -7.20 -7.2 + 0.2

Lz

Lt
f
u3 l

-10 -8 -6 -r .  -2 0
E n e r g y / e V

0
- 1 0 - 8 - 6 - t - - 2  A  2  4

E nerg y /eV

obtained then by diagonalizing the hermitian matrix

lHl,.r, - e;,dtr,1 .

As can be seen from Table 6, the aspherical corrections,
Ae,(k), are conceivably small and only on the scale of
interest for 125, and.L3,. In the latter case one might ex-
pect the differences in the construction of the potentials
to become particularly visible if our method would suffer
from a certain loss of accuracy. Obviously, the data agree
very satisfactorily within the numerical accuracy which is
of the order of some 10 2 eV.

The present study was financially supported by a grant of the
German Ministry of Education and Research (BMBF).
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Fig. 1. Local density of states (LDOS) of a covered (Op(1 x 1)) and an uncovered 6 layer Ni(lOO)-film: (a) O-adlayer, (b)
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