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A. J. Pérez-Jiménez
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Abstract

Presently used approximations to the exchange-correlation potential in
Density Functional Theory (DFT) are known to fail in describing the prop-
erties of certain compounds of which we discuss here only two examples:
CoO and stoichiometric La2CuO4. Both materials are insulating and antifer-
romagnetic. A DFT-calculation on CoO yields antiferromagnetic order, but
Co-associated magnetic moments that are by ∼ 1 µB smaller than the exper-
imental value, and one obtains the electronic structure of a metal. The latter
applies also to La2CuO4, and - in contrast to the experiment - the calcula-
tion does not even yield non-zero moments associated with the Cu-atoms.
We exploit the fact that approximate exchange-correlation potentials lead
necessarily to spin-dependent densities that differ from the exact ones. We
therefore derive modified Kohn-Sham (KS-)equations in which the effective
potentials depend on the exact spin-densities rather than on the standard
KS-densities. If the latter are modified by adding small (spin-up, spin-down)
portions that individually integrate to zero within the lattice unit cell and do
not change the total charge density, the inconsistencies with the experiment
can be removed.

PACS: 31.10.+z 71.10.-w 71.15-m 71.15Mb 71.20-b 75.50E
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1 Introduction

Although Density Functional Theory (DFT) has been surprisingly successful in very
diverse areas of application, there are various distinct failures two of which will be dis-
cussed in the present article. These cases of an apparent breakdown of the theory are
commonly attributed to insufficiencies of the approximations to the exchange-correlation
energy Exc and its functional derivative. The principal existence of the latter has rarely
been questioned despite the fact that the existence of this functional derivative requires
of necessity the density of the original interacting N-electron system to be non-interacting
v-representable. The latter is thought to be proven in a very extensive study by Chayes
et al.[1]. However, the validity of this proof is confined to discrete densities on lattices.
An extension to the continuum problem is not obvious as will be discussed in more de-
tail elsewhere (Fritsche et al. [2]). Spin-polarized systems are even more likely to escape
a consistent mathematical definition of their functional derivatives with respect to the
spin-dependent densities. This has recently been discussed independently by Capelle and
Vignale [3] and by Eschrig and Pickett [4]. The fact that the existence of an effective
potential for a given density constitutes the precondition for the existence of functional
derivatives in DFT, has been analyzed in great detail in the fundamental papers by
Lieb [5] and by H. Englisch and R. Englisch [6].
“Exact” effective potentials for the non-interacting substitute system, so-called “exact
Kohn-Sham (KS-)potentials” can be obtained by tuning a trial potential such that the
non-interacting (KS-)density differs from the exact one by a minimal mean square error.
This has successfully been done for light atoms up to Ar and for some small molecules.
The exact densities were obtained from independent configuration interaction (CI-)type
calculations. (See e. g. Morrison and Zhao [7] and references therein. A useful overview
has also been given by van Leeuwen, Gritsenko and Baerends [8].) As we shall demon-
strate in Section 3, it is unlikely, however, that these results may be interpreted as
proving the universal existence of an exact KS-potential also for more complex, in par-
ticular spin-ordered systems.

In Section 2 we derive KS-equations whose effective potential depends on the true spin-
densities rather than on the KS-densities. The band structures of CoO and La2CuO4

that result from these KS-equations are presented in Section 3. If one makes a plausible
assumption on the difference between the KS-densities and the exact ones the inconsis-
tencies with respect to the experimental findings can be removed.

2 Density-modified Kohn-Sham equations

The central point of this section consists in the assumption that interacting spin-densities
of spin-polarized systems cannot exactly be reproduced by non-interacting densities that
derive from a single Kohn-Sham determinant. We denote the ground-state wavefunction
of the interacting N-electron system by

Ψ0(x1,x2, . . . ,xN)

with x = (r, σ) standing, collectively, for the real-space and spin coordinate. The spin-
dependent charge density is given by

ρ0
σ(r) = N

∫
|Ψ0((r, σ),x2, . . . ,xN)|2d4x2 · · · d4xN . (1)
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The pair density is similarly defined

ρ
(σ′,σ)
2 (r′, r) = N(N − 1)

∫
|Ψ0((r

′, σ′), (r, σ),x3, . . . ,xN)|2d4x3 · · · d4xN . (2)

Because of Eq.(1) the pair density is connected to the one-particle density ρ0
σ(r) through

∫
ρ

(σ′,σ)
2 (r′, r)d3r′ = (Nσ′ − δσ′ σ) ρ0

σ(r). (3)

The electron-electron interaction may be cast as

〈Ve−e〉 =
1

2

∑

σ′σ

∫ ∫ ρ
(σ′,σ)
2 (r′, r)
|r′ − r| d3r′d3r. (4)

Following a suggestion of McWeeny [9] we subdivide the pair density in the form

ρ
(σ′,σ)
2 (r′, r) = ρ0

σ′(r
′)ρ0

σ(r)− ρ0
σ′(r

′)ρ0
σ(r)fσ′σ(r′, r) (5)

where fσ′σ(r′, r) is referred to as “correlation factor”. (Note that we have changed the
sign of McWeeny’s definition.)
On inserting this into Eq.(4) the electron-electron interaction attains the form

〈Ve−e〉 = VC + Exc (6)

where

VC =
1

2

∫ ∫ ρ0(r′) ρ0(r)

|r′ − r| d3r′d3r. (7)

and

Exc =
∑
σ

∫
ρ0

σ(r)εxc(r, σ)d3r (8)

The function εxc(r, σ) under the integral denotes the exchange-correlation energy per
particle and is defined as

εxc(r, σ) = −1

2

∑

σ′

∫ ρ0
σ′(r

′)fσ′σ(r′, r)
|r′ − r| d3r′. (9)

Inserting Eq.(5) into Eq.(3) one obtains the important sum rule
∫

ρ0
σ′(r

′) fσ′σ(r′, r) d3r′ = δσ′σ. (10)

If one simplifies here and in Eq.(9) the form of the correlation factor observing certain
general constraints one can easily evaluate the integrals for εxc(r, σ) and Exc. Omitting
some refinements, one obtains

Exc = −3

4

(
6

π

) 1
3 ∑

σ

∫
[ρ0

σ(r)]
4
3 d3r. (11)

(For details of the derivation see Fritsche [10].)
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We now decompose the exact wavefunction Ψ0 into two portions

Ψ0 = Φ0 + Ψ̃0, (12)

where Φ0 denotes a Slater determinant built from N orbitals that solve one-particle
equations

[
−1

2
∇2 + Veff (r, σ)

]
ψi σ(r) = εi σψi σ(r) (13)

for the N lowest lying energies εi σ. On inserting the decomposition (12) into Eq.(1) the
spin-resolved density decomposes accordingly

ρ0
σ(r) = ρ0σ(r) + ρ̂σ(r) (14)

where the first term on the right derives from Φ0 and the second is associated with Ψ̃0

ρ̂σ(r) = N
∫

[Φ∗
0Ψ̃0 + Φ0Ψ̃

∗
0 + Ψ̃∗

0Ψ̃0]d
4x2 · · · d4xN .

We tentatively assume that Veff (r, σ) in Eq.(13) is defined as the usual KS-potential but
with the KS-densities substituted by the exact densities.

If one uses the decomposition (12) in forming the expectation value of the Hamil-
tonian Ĥ for the interacting system the result may be cast as

E0 = 〈T 〉0 +
∫

ρ0(r) Vext(r) d3r + VC + Exc + 〈T̃ 〉 (15)

where Vext(r) stands for the external electrostatic potential set up by the atomic nuclei.
The quantity 〈T̃ 〉 denotes the difference between the true kinetic energy and the portion
〈T 〉0 that is associated with Φ0. The remaining three terms on the right-hand side of
Eq.(15) are formed with the exact densities.
We now subject the system to a small perturbation by adding

1

2

∑
i,j

(i6=j)

β

|ri − rj|e
−|ri−rj |/λ

to the electronic pair interaction in the Hamiltonian Ĥ, and by adding a perturbing po-
tential V̂ext(r) = γṼext(r) where β and γ are dimensionless strength factors of infinitesimal
magnitude. The screening length λ has atomic dimensions, and Ṽext(r) denotes a sum
of similarly screened nulear Coulomb potentials. This form of the perturbation ensures
charge conservation of the system.
In the presence of the perturbation we have

Ψ′
0 = Φ′

0 + Ψ̃′
0

where the new N orbitals contained in Φ′
0 are generated in the new effective potential

V ′
eff (r, σ) associated with ρ0′

σ (r). If we write

ψ′iσ(r) = ψiσ(r) + δψiσ(r)
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and correspondingly

ρ0′
σ (r) = ρ0

σ(r) + δρ0σ(r) + δρ̂σ(r)

and form the expectation value of the unperturbed Hamiltonian Ĥ with Ψ′
0, the change

in the total energy can be cast as

δE0 =
∑
σ

Nσ∑

i

∫
δψ∗iσ(r)[−1

2
∇2 + Vext(r) + VH(r) + Vxc(r, σ)]ψiσ(r) d3r + c.c.

+ {δ〈T̃ 〉+
∑
σ

∫
[Vext(r) + VH(r) + Vxc(r, σ)]δρ̂σ(r) d3r} (16)

where

VH(r) =
∫ ρ0(r′)
|r′ − r| d3r

and

Vxc(r, σ) = −
(

6

π

) 1
3

[ρ0
σ(r)]

1
3

both expressions containing the exact ground-state densities. Only the terms in curly
brackets depend on changes that are associated with Ψ̃0 → Ψ̃′

0. If we approximate the
(β, γ)-dependence of Φ′

0(β, γ) by its first-order Taylor polynomial

Φ′
0(β, γ) = Φ0(β = 0, γ = 0) +

∂Φ0

∂β

∣∣∣∣∣
β=0,γ=0

β +
∂Φ0

∂γ

∣∣∣∣∣
β=0,γ=0

γ,

and use the same approximation for Ψ̃′
0(β, γ), the above expression in curly brackets can

formally be written

{ } = βA + γB (17)

where A and B are integrals that contain only ground-state derived functions. As β
and γ are independent parameters and may have both signs, there will be a continuous,
infinite set of pairs (β, γ) for which expression (17) equals zero. This set of pairs is
associated with a set of functions Ψ′

0. Since δE0 must vanish for any infinitesimally
deformed function (Ψ0 → Ψ′

0), it follows from Eq.(16) for this particular set

∑
σ

Nσ∑

i

∫
δψ∗iσ(r)[−1

2
∇2 + Vext(r) + VH(r) + Vxc(r, σ)]ψiσ(r) d3r + c. c. = 0

which is guaranteed if the functions ψiσ(r) are solutions to

[−1

2
∇2 + Vext(r) + VH(r) + Vxc(r, σ)]ψiσ(r) = εiσψiσ(r)

where VH(r) and Vxc(r, σ) have to be formed with ρ0(r) and ρ0
σ(r), respectively. In the

practical calculations of the ensuing Section we shall be using a more refined expression
for V σ

xc(ρ
0
↑(r), ρ

0
↓(r)).
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The above final definition for Veff (r, σ) is in agreement with our tentative assumption.
One can easily verify that this definition is equivalent to minimizing the error that
occurs if the total energy is calculated by formally using the unaltered KS-expression
where 〈T 〉0 is cast in terms of occupied one-particle levels plus interaction integrals, but
with all density-dependent quantities now referring to the exact spin-densities. As a
consequence of this, total energy differences ∆E = E1−E0 between the ground-state Ψ0

and an excited state Ψ1 (corresponding, for example, to an interband transition energy
in a solid) can formally be expressed as if ρ̂σ(r) were zero, viz.

∆E = (εf − εi) + ∆fi

where εi, εf are the energies of the initial and final KS-band states, respectively, and

∆fi = ∆Exc −
∫

V σ
xc[ρ

0
↑(r), ρ

0
↓(r)] [|ψfσ(r)|2 − |ψiσ(r)|2] d3r

with ∆Exc denoting the discrete change of Exc associated with the transition Ψ0 → Ψ1.
(For details of the derivation see Fritsche [11].) The quantity ∆fi becomes very small
compared to εf − εi if the states ψfσ(r) and ψiσ(r) are very similar. This is of particular
importance for the gaps in the electronic structure of CoO and La2CuO4 that occur on
introducing excess spin-densities. In these cases the states adjacent to the gap prove to
be, in fact, almost identical.

3 Possible origin of the energy gap

We have carried out spin-polarized scalar-relativistic calculations on antiferromagnetic
CoO and La2CuO4 by self-consistently solving the KS-equations using the Full Potential
Linearized Augmented Plane Wave (FLAPW) code “Wien95” [12] and by employing the
Perdew-Wang option [13] for the exchange-correlation potential. As for details on the
lattice structure of these materials we refer to the articles by Dufek et al. [14] and by
Pickett [15]. The FLAPW-method requires a subdivision of the lattice unit cell into
non-overlapping spheres centered at the atomic nuclei and into an interstitial portion
where one expands the Bloch-type solutions ψσ

n(k, r) to the KS-equations in terms of
plane waves which are smoothly fitted to partial waves inside each sphere. Within the
latter ψσ

n(k, r) can be recast as

ψ↑(↓)n (k, r) =
∑

l,m

B
↑(↓)
lmα(k, εn(k)) R

↑(↓)
lα (εn(k), r) Ylm(r̂)

where n is the band index. The vector r = (r, r̂) is referenced to the sphere center, r̂
denotes the associated point on the unit sphere, Ylm(r̂) stands for the spherical harmonics

and R
↑(↓)
lα (εn(k), r) solves the radial part of the scalar-relativistic KS-equation that refers

to angular momentum l. The quantities

n
↑(↓)
l(α) =

∑

k,n
(occup.)

∑
m

|B↑(↓)
lmα(k, εn(k))|2

may be interpreted as angular momentum decomposed occupation numbers for the α-th
atom in the lattice cell. We first consider the case of CoO and label quantities referring to
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the two non-equivalent Co-atoms in the unit cell by a subscript “1” and “2”, respectively.
The magnetization is given by

m(r) = µB [ρ0
↑(r)− ρ0

↓(r)].

If the two densities are tentatively identified with the self-consistent KS-densities, one
observes that m(r) is completely confined to the Co-spheres. On inspection of the occu-

pation numbers n
↑(↓)
l(α) it turns out that there are no s- or p-contributions to m(r), that

is, the respective differences in n↑l(α) − n↓l(α) for l = 0 and l = 1 and α = 1, 2 are zero on
the scale of interest. For that reason we have to a very good approximation

M↑ =
∫

Ω1

m(r) d3r = µB ∆n2(1) (18)

where M↑ refers to the magnetic moment of the first Co atom and Ω1 denotes the volume

of the associated sphere, and we have introduced ∆n2(1) = n↑2(1)−n↓2(1) . The calculation
yields ∆n2(1) = 2.5 and one obtains - according to Eq.(18) - a magnetization M↑ = 2.5 µB

which is to be compared with the experimental value M exp.
↑ = 3.5 µB [16, 17, 18] being

larger by a spectacular amount of 1 µB. By contrast, an analogous calculation of M↑ for
hcp Co-metal yields very good agreement with the experimental value.
If one would gradually expand the CoO-lattice one would finally end up with M calc.

↑ =
3.0 µB which is just the magnetic moment of the free Co-atom where one has 5 d-electrons
for “spin up” and 2 for “spin down”. Hence, this value cannot be exceeded in a solid be-
cause the d-occupations are definitely lowered by p-d hybridization regardless how close
one gets to the “exact” KS-potential in choosing an improved potential. We mention
here only in passing that the occasional discussion of “unquenched moments” result-
ing from spin-orbit coupling [19] is fundamentally in conflict with the property of the
KS-potential of being generically orbital-independent and translationally invariant for a
perfect crystal. Hence, there can only be itinerant KS-states which remain practically
unaffected by spin-orbit coupling.
For CoO we have modified the self-consistent KS-densities ρ0↑(↓)(r) within the spheres
by adding an excess charge density

ρ̂↑(↓)(rα) =
∑

l,m

ρ̂
(lm)
↑(↓) (rα) Ylm(r̂α). (19)

Obviously, only the spherical component (l = 0, m = 0) can contribute to M↑. An
expansion of the KS-densities analogous to (19) yields sizable aspherical components
only for l = 4,m = 0 and l = 4,m = 3. For simplicity we assume that expression (19)
for ρ̂↑(↓)(rα) contains - apart from the spherical portion - only an aspherical component
for l = 4,m = 0 which, in fact, turns out to be the one responsible for the occurrence of
an insulating gap. This is in line with the observations of Dufek et al.[14].
Self-consistent KS-calculations on paramagnetic and antiferromagnetic CoO yield density
differences

∆ρ
(lm)
0↑(↓)(rα) = ± [ρ

(lm)
0↑(↓)(rα)− ρ

(lm)
0para↑(↓)(rα)]

which are different for α = 1 and α = 2. We define the functions

∆̂ρ(00)(rα) =
1

2
[∆ρ

(00)
0↑ (rα) + ∆ρ

(00)
0↓ (rα)]
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and

∆̂ρ(lm)(rα) =





∆ρ
(lm)
0↑ (rα) for α = 1

∀ l 6= 0

∆ρ
(lm)
0↓ (rα) for α = 2

and assume the (l, m)-dependent components to have the form

ρ̂
(lm)
↑(↓) (rα) = ±wlm ∆̂ρ(lm)(rα)/n

where n · µB is the KS-value of the magnetic moment per Co-atom and wlm denotes an
enhancement (i. e. weight) factor. The assumed excess charge density may be cast then

ρ̂↑(↓)(rα) = ρ̂
(0,0)
↑(↓) (rα) Y00(r̂α) + ρ̂

(4,0)
↑(↓) (rα) Y40(r̂α).

The modified densities are hence given by

ρ0
↑(↓)(rα) = ρ0↑(↓)(rα) + ρ̂↑(↓)(rα). (20)

We emphasize that our particular construction of the spin-dependent densities guarantees
that the original total charge density of the KS-calculation is conserved for any choice of
the weight factors which ensures positive spin-densities. If we choose w00 = 0.5 Eq.(20)
yields a magnetic moment of M↑ = 3.5 µB in agreement with the experiment.

On inserting these modified densities into the expression for VH(r) and Vxc(r, σ),
one obtains a new band structure for CoO. For a choice of w40 = 17.5 the resulting
density of states (DOS) is shown in Fig.1 together with the DOS of the paramagnetic
and the spin-polarized KS-case.
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Figure 1: Total densities of states (DOS) obtained from a self-consistent KS-band struc-
ture calculation on paramagnetic and antiferromagnetic (AF) CoO (upper two panels).
The panel below refers to a band structure calculation where V ↑(↓)

xc (ρ0↑(r), ρ0↓(r)) has
been formed with AF-densities that are supplemented by excess spin-densities ρ̂↑(↓)(r)
according to Eq.(20) and Co-assigned weight factors. The structures below −4eV in the
upper two panels and below −5eV in the third panel belong to the occupied oxygen-
derived bands, the remaining structures are associated with the cobalt-derived d-bands.

Obviously, a gap above the Fermi level opens up which is controlled by ρ̂
(4,0)
↑(↓) (r)

and could be further enlarged. The approximate size of the gap of 0.5 eV seems to be
in good agreement with electron energy loss (EELS-) experiments by Gorschlüter and
Merz [20] . Since the band states on either side of the gap are strongly d-dominated,
they are practically inaccessible to detection by optical absorption as opposed to EELS
which is the method of choice in that case.
If we use the GGA-form [21] for Vxc(r, σ) instead of the LSD-approximation by Perdew
and Wang [13] the gap increases by more than a factor of 2. We omit displaying this
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band structure.
The case of La2CuO4 can be treated in complete analogy to CoO, the only difference
being that one has to choose woo = 0.2 to fit the observed magnetic moment of the Cu-
atoms, and to replace ρ̂

(4,0)
↑(↓) (rα) by ρ̂

(2,0)
↑(↓) (rα) which is the relevant aspherical component

in that case. The standard KS-band structure and the modified one is shown in Fig.2
where we have chosen w20 = 15.
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La CuO

paramagnetic
2 4

Figure 2: Band structure of stoichiometric La2CuO4. Right: self-consistent KS-band
structure (paramagnetic) Left: AF-band structure where Vxc(ρ0↑(r), ρ0↓(r)) has been
formed with modified spin-densities according to Eq.(20) and Cu-assigned weight factors.
The band states are marked by open circles whose diameters scale with the fraction of
the norm of the band state within the first Cu-atom. (There are two non-equivalent
Cu-atoms in the lattice unit cell.) We omit showing the respective results for the second
Cu-atom because they differ from those of the first one only in that the Cu-weights of
the bands are complementary with respect to certain regions around symmetry points
of the Brillouin zone.

Again, a gap opens up above the Fermi level. The bands are marked by open
circles whose diameters are proportional to the fraction of the norm of the band state
within the first Cu-sphere. (There are two non-equivalent Cu-atoms in the unit cell.)
As a standard KS-calculation does not yield antiferromagnetic order, we have generated
the relevant components ρ̂

(lm)
↑(↓) (rα) of the excess spin-density by using the results for the

Co-atoms of the CoO calculation, fittingly rescaled them to the size of the Cu-atoms and
introduced the above weights.
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